Skip to main content Accessibility help
×
Home

Raman Analysis of Single Crystalline Bulk Aluminum Nitride: Temperature Dependence of the Phonon Frequencies

  • Jonathan M. Hayes (a1), Martin Kuball (a1), Ying Shi (a2) and James H. Edgar (a2)

Abstract

The frequencies of the E2(high), A1(LO), A1(TO), E1(TO) and E1(LO) phonons of singlecrystalline bulk AlN were measured using micro-Raman spectroscopy over a temperature range from 10K to 1275K. A modeling of the temperature dependence of the AlN phonon frequencies considering the thermal lattice expansion and two-phonon decay mechanisms gave results in good agreement with the experimental data. At temperatures in excess of ∼300K an approximate linear shift of the phonon frequencies with temperature was found. In this high temperature regime, we determined a frequency shift of the E2(high) phonon of (-2.22 ± 0.02) ×10−2cm−1/K, which is very similar to values reported for bulk GaN. This suggests that similar parameters will be suitable for AlxGa1−xN alloys, commonly used in high-power high-frequency electronic devices. The results provide the basis for non-invasive local temperature monitoring in highpower III-nitride devices using micro-Raman scattering techniques.

Copyright

References

Hide All
[1] Han, J., Crawford, M. H., Shul, R. J., Figiel, J. J., Banas, M., Zhang, L., Song, Y. K., Zhou, H., and Nurmikko, A. V., Appl. Phys. Lett. 73, 1688 (1998).
[2] Li, R., Chai, S. J., Wong, L., Chen, Y., Wang, K. L., Smith, R. P., Martin, S. C., Boutros, S., and Redwing, J. M., IEEE Electron. Dev. Lett. 20, 323 (1999).
[3] McNeil, L. E., Grimsditch, M., and French, R. H., J. Am. Ceram. Soc. 76, 1132 (1993).
[4] Bergman, L., Dutta, M., Balkas, C., Davies, R. F., Christman, J. A., Alexson, D., and Nemanich, R. J., J. Appl. Phys. 85, 3535 (1999).
[5] Liu, M. S., Bursill, L. A., Prawer, S., Nugent, K. W., Tong, Y. Z., and Zhang, G. Y., Appl. Phys. Lett. 74, 3125 (1999).
[6] Siegle, H., Kaczmarczyk, G., Filippidis, L., Litvinchuk, A. P., Hoffmann, A., and Thomsen, C., Phys. Rev. B 55, 7000 (1997).
[7] Edgar, J. H., Robins, L. H., Coatney, S. E., Liu, L., Chaudhuri, J., Ignatiev, K., and Rek, Z., Mater. Sci. Forum 338–342, 1599 (2000).
[8] Loudon, R., Adv. Phys. 13, 423 (1964).
[9] Menéndez, J., and Cardona, M., Phys. Rev. B 29, 2051 (1984).
[10] Iwanaga, H., Kunishige, A., and Takeuchi, S., J. Materials Science 35, 2451 (2000).
[11] Kuball, M., Hayes, J. M., Prins, A. D., Oden, N. W. A. van, Dunstan, D. J., Shi, Y., and Edgar, J. H., accepted for publication in Appl. Phys. Lett.
[12] Kuball, M., Hayes, J. M., Shi, Y., and Edgar, J. H., Proceedings of MRS Fall Meeting 2000, Paper G7.7.
[13] Slack, G. A., and Bartram, S. F., J. Appl. Phys. 46, 89 (1975).
[14] Kozawa, T., Kachi, T., Kano, H., Taga, Y., Hashimoto, M., Koide, N., and Manabe, K., J. Appl. Phys. 75, 1098 (1994).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed