Skip to main content Accessibility help
×
Home

Radiation-induced structural changes, percolation effects and resistance to amorphization by radiation damage

  • Kostya Trachenko (a1) (a2), Martin T Dove (a1), Miguel Pruneda (a1), Emilio Artacho (a1), Ekhard Salje (a1), Thorsten Geisler (a3), Ilian Todorov (a4) and Bill Smith (a4)...

Abstract

We combine simulation, theoretical and experimental results to study radiation damage effects in complex oxides under irradiation. In zircon, we study large density variations in the damaged structure, and show how damage percolation results in the enhanced transport extending to macroscopic lengthscale, and suggest that percolation threshold serve as a benchmark for acceptable waste load in a waste form. In perovskite, we identify common defects in the damaged structure, and relate their stability to chemical bonding. Finally, we formulate the criterion for resistance to amorphization by radiation damage: a material is amorphizable if it is able to form a covalent network.

Copyright

References

Hide All
[1] Radioactive waste forms for the future, ed. Lutze, W. and Ewing, R.c. (Elsevier Science Publishers, 1988).
[2] Ewing, R. C., Lutze, W. and Weber, W. J., J. Mater. Res. 10, 243 (1995).
[3] Farnan, I. and Salje, E. K. H., J. Appi. Phys. 89, 2084 (2001).
[4] Rios S, S., Salje, E. K. H., Zhang, M. and Ewing, R. C., J. Phys.: Cond. Matt. 12, 2401 (2000).
[5] Trachenko, K., Dove, M. T. and Salje, E. K. H., Phys. Rev. B 65, 180102(R) (2002).
[6] For review, see Zallen, R. The Physics of Amorphous Solids (John Wiley and Sons, 1983).
[7] Geisler, T., Trachenko, K., Rios, S., Dove, M. T. and Salje, E. K. H., J. Phys.: Cond. Matt. 15, 597 (2001).
[8] Geisler, T., Rashwan, A. A., Rahn, M., Poller, U., Zwingmann, H., Pidgeon, R. T. and Schleicher, H., Min. Mag. 67, 485 (2003).
[9] Lorenz, B., Orzall, I. and Heuer, H. O., J. Phys. A: Math. Gen. 26, 4711 (1993);
Consiglio, R, Baker, D. R., Paul, G. and Stanley, H. E., Physica A 319, 49 (2003).
[10] Trachenko, K., Dove, M. T. and Salje, E. K. H. J. Phys.: Cond. Matt. 13, 1947 (2001);
Trachenko, K., Dove, M. T. and Salje, E. K. H., J. Phys.: Cond. Matt. 15 1, (2003).
[11] Rios, S. and Salje, E. K. H., submitted.
[12] Smith, W. and Forester, T. R., J. Mol. Graph. 14, 136 (1996).
[27] Li, J., Simul. Mater. Sci. Eng. 11, 173 (2003).
[14] Bacon, D. J., Computer Simulation in Materials Science, ed. by Kirchner, H. O. et al (Kluwer, Dordrecht, 1996).
[15] Wang, L. M. and Birtcher, R. C., Phil. Mag. A, 64, 1209 (1991).
[16] Kucheyev, S. O., Williams, J. S., Jagadish, C., Zou, J., Craig, V. S. J. and Li, G., Appi. Phys. Lett. 77, 1455 (2000);
Kucheyev, S. O., Williams, J. S., Zou, J., Jagadish, C. and Li, G., Appi. Phys. Lett. 77, 3577 (2000).
[17] New Kinds of Phase Transitions: Transformations in Disordered Substances, Ed. by Brazhkin et al, V. V. (Kluwer, Dordrecht, 2002).
[18] Trachenko, Κ., Pruneda, M., Artacho, E. and Dove, M. T., submitted.
[19] Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W. O. and Major, A., Ceochem. J. 13, 141 (1979);
Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W. O. and Major, A., Nature 278, 219 (1979).
[20] Karioris, F. G., Appaji Gupta, K., Cartz, L. and Labbe, J. C., J. Nucl Mater. 108, 748 (1982);
Mitamura, H., Matsumoto, S., Hart, K. P., Miyazaki, T., Vanee, E. R., Togashiand, Y. and White, J., J. Am. Ceram. Soc. 75, 392 (1992);
Hough, A. and Marples, J. A. C., The radiation stability of SYNROC: final report, ANSTO report 1993;
Smith, K. L., Zaluzec, N. J. and Lumpkin, G. R., J. Nucl. Mater. 250, 36 (1997);
Meldrum, A., Boatner, L. A., Weber, W. J. and Ewing, R. C, J. Nucl Mater. 300, 242 (2002).
[21] Note that the simulated event effectively corresponds to the energy that is higher than that of recoil nucleus in a- decay, since in the experiment the energy transfer also includes electronic energy loss process, leading to a larger size of the damaged region.
[22] Nordlund, K., Runeberg, N. and Sundholm, D., Nuci. Instr. and Meth. in Phys. Res. B 132, 45 (1997).
[23] Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P. and Sánchez-Portal, D., J. Phys.: Condens. Matter 14, 2745 (2002);
Ordejon, P., Artacho, E. and Soler, J. M., PRB 53, 10441 (1996).
[24] Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964);
Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).
[25] Pruneda, M. and Artacho, E., submitted.
[26] Calleja, M., Dove, M. T. and Salje, E. K., J. Phys.: Cond. Matt. 15, 2301 (2003).
[27] Li, J., Modelling Simul. Mater. Sci. Eng. 11, 173 (2003).
[28] For review, see Trachenko, K., Artacho, E. and Dove, M. T., submitted.
[29] Rubia, T. Diaz de la, Averback, R. S., Benedeck, R. and King, W. E., Phys. Rev. Lett. 59, 1930 (1987).
[30] Sickafus, K. E. et al, J. Nucl Mater 274, 66 (1999);
Wang, S. X., Wang, L. M., Ewing, R. C. and Doremus, R. H., J. Non.-Cryst. Sol. 238, 198 (1998).
[31] Phillips, J. C., Rev. of Mod. Phys. 42, 317 (1970).
[32] Hobbs, L. W., Nucl. Meth. in Phys. Res. B. 91, 30 (1994); J. Non.-Cryst. Sol. 182, 27 (1995).
[33] Phillips, J. C., Phys. Rev. B 29, 5683 (1984).
[34] Kucheyev, S. O., Williams, J. S., Jagadish, C., Zou, J. and Li, G., Phys. Rev. B 62, 7510 (2000);
Kucheyev, S. O. et al, Phys. Rev. B 67, 094115 (2003).
[35] Pauling, L., The nature of the chemical bond (Cornell University Press, 1960).

Radiation-induced structural changes, percolation effects and resistance to amorphization by radiation damage

  • Kostya Trachenko (a1) (a2), Martin T Dove (a1), Miguel Pruneda (a1), Emilio Artacho (a1), Ekhard Salje (a1), Thorsten Geisler (a3), Ilian Todorov (a4) and Bill Smith (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed