Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-19T11:26:06.313Z Has data issue: false hasContentIssue false

Radiation-induced Chemical Disorder in Covalent Materials

Published online by Cambridge University Press:  18 January 2011

Manabu Ishimaru
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
Yanwen Zhang
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
William J. Weber
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
Get access

Abstract

Chemical disorder in ion-irradiated SiC and GaN has been examined by means of transmission electron microscopy. Radial distribution functions obtained by a quantitative analysis of electron diffraction intensities revealed that homonuclear bonds, which do not exist in the crystalline state, are formed in both ion-irradiated specimens. The origin of the homonuclear bonds is quite different between SiC and GaN. The constitute elements mix on the atomic-scale in amorphous SiC, while phase separation induced by irradiation is attributed to the formation of self-bonded Ga atomic pairs in amorphous/nanocrystalline GaN.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Elliott, S. R., “Physics of Amorphous Materials”, 2nd ed. (Longman Scientific & Technical, UK, 1990).Google Scholar
2. Ziegler, J.F., Biersack, J.P., and Littmark, U., “The Stopping and Range of Ions in Solids”, (Pergamon, New York, 1985).Google Scholar
3. Hirotsu, Y., Ishimaru, M., Ohkubo, T., Hanada, T., and Sugiyama, M., J. Electron Microsc. 50, 435 (2001).Google Scholar
4. Ishimaru, M., Nucl. Instrum. Methods Phys. Res. B 250, 309 (2006).Google Scholar
5. Hirata, A., Hirotsu, Y., Ohkubo, T., Hanada, T., and Bengus, V. Z., Phys. Rev. B 74, 214206 (2006).Google Scholar
6. Ishimaru, M., Hirata, A., Naito, M., Bae, I.-T., Zhang, Y., and Weber, W. J., J. Appl. Phys. 104, 033503 (2008).Google Scholar
7. Ishimaru, M., Zhang, Y., and Weber, W. J., J. Appl. Phys. 106, 053513 (2009).Google Scholar
8. Kucheyev, S. O., Williams, J. S., and Pearton, S. J., Mater. Sci. Eng. R 33, 51 (2001).Google Scholar
9. Kucheyev, S. O., Williams, J. S., Zou, J., Jagadish, C., and Li, G., Appl. Phys. Lett. 77, 3577 (2000).Google Scholar
10. Bentley, J., Angelini, P., Gove, A. P., Sklad, P. S., and Fisher, A. T., Inst. Phys. Conf. Ser. 98, 107 (1989).Google Scholar
11. Meneghini, C., Pascarelli, S., Boscherini, F., Mobilio, S., and Evangelisti, F., J. Non-Cryst. Solids 137/138, 75 (1991).Google Scholar
12. Laaziri, K., Kycia, S., Roorda, S., Chicoine, M., Robertson, J. L., Wang, J., and Moss, S. C., Phys. Rev. B 60, 13520 (1999).Google Scholar
13. Ishimaru, M., Munetoh, S., and Motooka, T., Phys. Rev. B 56, 15133 (1997).Google Scholar
14. Ishimaru, M., J. Appl. Phys. 91, 686 (2002).Google Scholar
15. Takeshita, T., Kurata, Y., and Hasegawa, S., J. Appl. Phys. 71, 5395 (1992).Google Scholar
16. Kaloyeros, A. K., Rizk, R. B., and Woodhouse, J. B., Phys. Rev. B 38, 13099(1988).Google Scholar
17. Bolse, W., Nucl. Instr. and Meth. B 148, 83 (1999).Google Scholar
18. Finochhi, F., Galli, G., Parinello, M., and Bertoni, C. M., Phys. Rev. Lett. 68, 3044 (1992).Google Scholar
19. Ishimaru, M., Bae, I.-T., Hirotsu, Y., Matsumura, S., and Sickafus, K. E., Phys. Rev. Lett. 89, 055502 (2002).Google Scholar
20. Bae, I.-T., Ishimaru, M., Hirotsu, Y., and Sickafus, K. E., J. Appl. Phys. 96, 1451 (2004).Google Scholar
21. Ishimaru, M., Bae, I.-T., and Hirotsu, Y., Phys. Rev. B 68, 144102 (2003).Google Scholar
22. Gao, F., Bylaska, E. J., and Weber, W. J., Phys. Rev. B 70, 245208 (2004).Google Scholar
23. Nord, J., Nordlund, K., and Keinonen, J., Phys. Rev. B 68, 184104 (2003).Google Scholar
24. Bae, I.-T., Jiang, W., Wang, C. M., Weber, W. J., Zhang, Y., J. Appl. Phys. 105, 083514 (2009).Google Scholar
25. Waseda, Y., “The Structure of Non-Crystalline Materials”, (McGraw-Hill, International Book Co., NY, 1980).Google Scholar
26. Snead, L. L. and Hay, J. C., J. Nucl. Mater. 273, 213 (1999).Google Scholar
27. Giri, P. K., Raineri, V., Franzo, G., and Rimini, E., Phys. Rev. B 65, 012110 (2001).Google Scholar
28. Laaziri, K., Roorda, S., and Baribeau, J. M., J. Non-Cryst. Solids 191, 193 (1995).Google Scholar
29. Ishimaru, M., Bae, I.-T., Hirata, A., Hirotsu, Y., Valdez, J. A., and Sickafus, K. E., Phys. Rev. B 72, 024116 (2005).Google Scholar