Skip to main content Accessibility help
×
Home

Radiation Effects in Nonmetals: Amorphization, Phase Decomposition, and Nanoparticles

  • A. Meldrum (a1), L.A. Boatner (a1), C.W. White (a1) and D.O. Henderson (a2)

Abstract

Radiation effects in nonmetals have been studied for well over a century by geologists, mineralogists, physicists, and materials scientists. The present work focuses on recent results of investigations of the ion-beam-induced amorphization of the ABO4 compounds – including the orthophosphates (LnPO4; Ln = lanthanides) and the orthosilicates: zircon (ZrSiO4), hafnon (HfSiO4), and thorite (ThSiO4). In the case of the orthosilicates, heavy-ion irradiation at elevated temperatures causes the precipitation of a nanocrystalline metal oxide. Electron irradiation effects in these amorphized insulating ceramics can produce localized recrystallization on a nanometer scale. Similar electron irradiation techniques were used to nucleate monodispersed compound semiconductor nanocrystals formed by ion implantation of the elemental components into fused silica. Methods for the formation of novel structural relationships between embedded nanocrystals and their hosts have been developed and the results presented here demonstrate the general flexibility of ion implantation and irradiation techniques for producing unique near-surface microstructures in ion-implanted host materials.

Copyright

References

Hide All
[1] Broegger, W.C., Zeit. Krist. 16, 122 (1890).
[2] Meldrum, A., Boatner, L.A., and Ewing, R.C., J. Mater. Res. 12, 1816 (1997).
[3] Meldrum, A., Zinkle, S.J., Boatner, L.A., and Ewing, R.C., Nature 395, 56 (1998).
[4] Krogh, T.E., Geochim. Cosmochim. Acta 46, 637 (1982).
[5] Heaman, L. and Parrish, R.R., in Applications of Radiogenic Isotope Systems to Problems in Geology: MAC Short Course Volume 19, edited by Heaman, L. and Ludden, J.N. (Mineralogical Association of Canada, Toronto, Ont. 1991) pp. 59102.
[6] Burakov, B.E., Anderson, E.B., Rovsha, V.S., Ushakov, S.V., Ewing, R.C., Lutze, W., and Weber, W.J., in Scientific Basis for Nuclear Waste Management XIX, edited by Murphy, W.M. and Knecht, D.A. (Plenum, New York, 1996), pp. 3340.
[7] Ewing, R.C., Lutze, W., and Weber, W.J., J. Mater. Res. 10, 243 (1995).
[8] Ewing, R.C., Weber, W.J., and Lutze, W., in Crystalline Ceramics: Waste Forms for the Disposal of Weapons Plutonium. NATO Workshop Proceedings, edited by Merz, E.R. and Walter, C.E. (Academic Publishers, Dordrecht, The Netherlands, 1996), pp. 6583.
[9] Meldrum, A., Boatner, L.A., Weber, W.J., and Ewing, R.C., Geochim. Cosmochim. Acta 62, 2509 (1998).
[10] Hawthorne, F.C., Groat, L.A., Raudsepp, M., Ball, N.A., Kimata, M., Gaba, R., Halden, N.M., Lumpkin, G.R., Ewing, R.C., Greegor, R.B., Lytle, F.W., Ercit, T.C., Rossman, G.R., Wicks, F.J., Ramik, R.A., Sherriff, B.L., Fleet, M.E., and McCammon, C., Am. Mineral. 76, 370 (1991).
[11] Pabst, A., Am. Mineral. 37, 137 (1952).
[12] Meldrum, A., Boatner, L.A., Zinkle, ST., Wang, S.X., Wang, L.M., and Ewing, R.C., Can. Mineral. (in press).
[13] Snead, L.L., Zinkle, S.J., Hay, J.C., and Osborne, M.C., Nucl. Instr. Meth. Phys. Res. B141, 123 (1998).
[14] Holland, H. and Gottfried, D. Acta Crystallographica 8, 291 (1955).
[15] Vance, E.R. and Anderson, B.W., Min. Mag. 38, 605 (1972).
[16] Murakami, T., Chakoumakos, B.C., Ewing, R.C., Lumpkin, G.R., and Weber, W.J., Am. Mineral. 76, 1510 (1991).
[17] Weber, W.J., Ewing, R.C., and Wang, L.M., J. Mater. Res. 9, 688 (1994).
[18] McLaren, A.C., Gerald, J.D. Fitz, and Williams, I.S., Geochim. Cosmochim. Acta 58, 993 (1994).
[19] Weber, W.J., Devanathan, R., Meldrum, A., Boatner, L.A., Ewing, R.C., and Wang, L.M., (these proceedings).
[20] Allen, C.W. and Ryan, E.A., in Microstructure Evolution during Irradiation, edited by Robertson, I.M., Was, G.S., Hobbs, L.W., and Rubia, T. Diaz de la (Mater. Res. Soc. Proc. 439, Pittsburg, PA 1997), pp.277288.
[21] Meldrum, A., Zinkle, ST., Boatner, L.A., and Ewing, R.C., Phys. Rev. B (in press).
[22] Meldrum, A., Boatner, L.A., and Ewing, R.C., Phys. Rev. B 56, 13805 (1997).
[23] Hobbs, L.W., Nucl. Inst. Meth. Phys. Res. B91, 30 (1994).
[24] Devanathan, R., Weber, W.J., Sickafus, K.E., Nastasi, M., Wang, L.M., and Wang, S.X., Nucl. Instr. Meth. Phys. Res. B141, 366 (1998).
[25] Miller, M.L. and Ewing, R.C., Ultramicroscopy 48, 203 (1992).
[26] Virk, H.S., Radiat. Eff. Def. Sol. 133, 87 (1995).
[27] Zinkle, S.J. and Kinoshita, C., J. Nucl. Mater. 251, 200 (1997).
[28] Gong, W.L., Wang, L.M., Ewing, R.C., and Zhang, J., Physical Review B 54, 3800 (1996).
[29] Qin, L.C. and Hobbs, L.W., J. Non-Cryst. Sol. 192&193, 456 (1995).
[30] Sales, B.C., Zuhr, R.A., McCallum, J.C., and Boatner, L.A, Phys. Rev. B 46, 3215 (1992).
[31] Wesch, W., Opferman, T., and Bachman, T., Nucl. Instr. Meth. Phys. Res. B141, 338 (1998).
[32] Zinkle, S.J., J. Nucl. Mater. 219, 113(1995).
[33] Zinkle, ST., Nucl. Instr. Meth. Phys. Res. B91, 234 (1994).
[34] Jencic, I. and Robertson, I.M., J. Mater. Res. 11, 2152 (1996).
[35] Lee, E.H., Maziasz, P.J., and Rowcliffe, A.F., in Phase Stability During Irradiation, edited by Holland, J.R., Mansur, L.K., and Potter, D.I. (TMS/AIME, New York, 1981) pp. 191218.
[36] Wang, L.M., Gong, W.L., Bordes, N., Ewing, R.C., and Fei, Y., in The Microstructure of Irradiated Materials, edited by Robertson, I.M. (Mater. Res. Soc. Symp. Proc. 373, Pittsburgh, PA 1995) pp. 407412.
[37] Wang, S.X., Wang, L.M., Ewing, R.C., and Doremus, R.H., J. Non-Cryst. Sol. 238, 198 (1998).
[38] Wolf, D., Okamoto, P.R., Yip, S., Lutsko, J.F., and Kluge, M., J. Mater. Res. 5, 286 (1989).
[39] Devanathan, R., Lam, N.Q., and Okamoto, P.R., Phys. Rev. B 48, 42 (1993).
[40] Devanathan, R., Weber, W.J., and Rubia, T. Diaz de la, Nucl. Instr. Meth. Phys. Res. B141, 118 (1998).
[41] Kirkaldy, J.S. and Young, D.J., Diffusion in the Condensed State, Institute of Metals, London, 1987.
[42] White, C.W., Budai, J.D., Withrow, S.P., Zhu, J.G., Sonder, E., Zuhr, R.A., Meldrum, A., Hembree, D.M., Henderson, D.O., and Prawer, S., Nucl. Instr. Meth. Phys. Res. B141, 228 (1998).
[43] Budai, J.D., White, C.W., Withrow, S.P., Chisholm, M.F., Zhu, J., and Zuhr, R.A., Nature 390, 384 (1997).
[44] Meldrum, A., White, C.W., Boatner, L.A., Anderson, I.M., Zuhr, R.A., Sonder, E., Budai, J.D., and Henderson, D.O., Nucl. Instr. Meth. Phys. Res. (in press).
[45] Fisher, S.B., Radiat. Eff. 5, 239 (1970).
[46] Meldrum, A., Zuhr, R.A., Sonder, E., Budai, J.D., White, C.W., Boatner, L.A., Ewing, R.C., and Henderson, D.O., Appi. Phys. Lett. (in press).
[47] Naguib, H.M. and Kelly, R., Radiat. Eff. 25, 1 (1975).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed