Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T11:09:45.163Z Has data issue: false hasContentIssue false

Radiation Effects in Crystalline Oxide Host Phases for the Immobilization of Actinides

Published online by Cambridge University Press:  21 March 2011

William J. Weber
Affiliation:
Fundamental Science Directorate, Pacific Northwest National Laboratory Richland, WA 99352, USA
Rodney C. Ewing
Affiliation:
Department of Nuclear Engineering & Radiological Sciences, University of Michigan Ann Arbor, MI 48109-2104, USA
Get access

Abstract

Radiation effects from alpha-decay events in crystalline oxides, which are proposed for the immobilization of actinides, often lead to amorphization, macroscopic swelling and order-of-magnitude increases in dissolution rates for all of the phases currently under consideration. However, the results of systematic experimental studies using short-lived actinides and ion-beam irradiations, studies of radiation effects in U- and Th-bearing minerals, and the development of new models of the damage process over the past 20 years have led to a substantial increase in the understanding of the processes of damage accumulation in apatite, zircon, perovskite, zirconolite, and pyrochlore/fluorite structures. This fundamental scientific understanding now provides a basis for predicting the performance of nuclear waste forms in a radiation field. One of the recent successes of these studies has been the discovery of a class of radiation-resistant pyrochlore/fluorite structures that can serve as highly durable, radiation-resistant host phases for the immobilization of actinides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hippel, F.N. von, Science 293, 2397 (2001).Google Scholar
2. Macfarlane, A., Hippel, F. von, Kang, J., and Nelson, R., Bulletin of the Atomic Scientists 57, 53 (2001).Google Scholar
3. Burnie, S. and Smith, A.M., Bulletin of the Atomic Scientists 57, 58 (2001).Google Scholar
4. Hibbs, M., Bulletin of the Atomic Scientists 57, 63 (2001).Google Scholar
5. Muller, I. and Weber, W.J., MRS Bulletin 26, 698 (2001).Google Scholar
6. Weber, W.J., Ewing, R.C., C.Catlow, R.A., Rubia, T. Diaz de la, Hobbs, L.W., Kinoshita, C., HMatzke, j., Motta, A.T., Nastasi, M., E.Salje, K.H., Vance, E.R., and Zinkle, S.J., J. Mater. Res. 13, 1434 (1998).Google Scholar
7. Ewing, R.C., Weber, W.J., and Lutze, W., in Disposal of Weapons Plutonium, edited by Merz, E.R. and Walter, C.E. (Kluwer Academic Publishers, The Netherlands, 1996), p. 65.Google Scholar
8. Strachan, D.M., Scheele, R.D., Buchmiller, W.C., Vienna, J.D., Sell, R.L., and Elovich, R.J., Preparation and Characterization of 238Pu-Ceramics for Radiation Damage Experiments, PNNL-13251 (Pacific Northwest National Laboratory, Richland, WA, 2000).Google Scholar
9. Strachan, D.M., Scheele, R.D., Icenhower, J.P., Kozelisky, A.E., Sell, R.L., Logore, V.L., Schaef, H.T., O'Hara, M.J., Brown, C.F., and Buchmiller, W.C., The Status of Radiation Damage Experiments, PNNL-13721 (Pacific Northwest National Laboratory, Richland, WA, 2001).Google Scholar
10. Begg, B.D., Vance, E.R., and Conradson, S.D., J. Alloys and Comp. 271–273, 221 (1998)Google Scholar
11. Bois, L., Guittet, M.J., Carrot, F., Trocellier, P., and Gautier-Soyer, M., J. Nucl. Mater. 297, 129 (2001).Google Scholar
12. Ewing, R.C., Lutze, W., and Weber, W.J., J. Mater. Res. 10, 243 (1995).Google Scholar
13. Ewing, R.C., Weber, W.J., and Clinard, F.W. Jr, Prog. Nuc. Energy 29, 63 (1995).Google Scholar
14. Weber, W.J. and HMatzke, j., Mater. Lett. 5, 9 (1986).Google Scholar
15. Weber, W.J., J. Amer. Ceram. Soc. 76, 1729 (1993).Google Scholar
16. Boult, K.A., Dalton, J.T., Evans, J.P., Hall, A.R., Inns, A.J., Marples, J.A.C., and Paige, E.L., The Preparation of Fully-Active Synroc and Its Radiation Stability, AERE-R-13318 (Harwell Laboratory, Oxfordshire, UK, 1988).Google Scholar
17. Weber, W.J., Wald, J.W., and HMatzke, j., J. Nucl. Mater. 138, 196 (1986).Google Scholar
18. Clinard, F.W. Jr, Rohr, D.L., and Roof, R.B., Nucl. Instrum. Meth. B1, 581 (1984).Google Scholar
19. Weber, W.J., Radiation Effects 77, 295 (1983).Google Scholar
20. Weber, W.J., Wald, J.W., and Matzke, Hj., Mater. Lett. 3, 173 (1985).Google Scholar
21. Clinard, F.W. Jr, Hobbs, L.W., Land, C.C., Peterson, D.E., Rohr, D.L., and Roof, R.B., J. Nucl. Mater. 105, 248 (1982).Google Scholar
22. Clinard, F.W. Jr, Peterson, D.E., Rohr, D.L., and Hobbs, L.W., J. Nucl. Mater. 126, 245 (1984).Google Scholar
23. Ewing, R.C., Chakoumakos, B.C., Lumpkin, G.R., Murakami, T., Greegor, R.B. and Lytle, F.W., Nucl. Instrum. Meth. B32, 487 (1988).Google Scholar
24. Murakami, T. Chakoumakos, B.C., Ewing, R.C., Lumpkin, G.R. and Weber, W.J., American Mineralogist 76, 1510 (1991).Google Scholar
25. Weber, W.J., Ewing, R.C., and Wang, L.M., J. Mater. Res. 9, 688 (1994).Google Scholar
26. Salje, E.K.H., Chrosch, J. and Ewing, R.C., American Mineralogist 84, 1107 (1999).Google Scholar
27. Ríos, S., Salje, E.K.H., Zhang, M. and Ewing, R.C., Journal of Physics: Condensed Matter 12, 2401 (2000).Google Scholar
28. Lumpkin, G.R., Ewing, R.C., Chakoumakos, B.C., Greegor, R.B., Lytle, F.W., Foltyn, E.M., Clinard, F.W. Jr, Boatner, L.A. and Abraham, M.M., J. Mater. Res. 1, 564 (1986).Google Scholar
29. Ewing, R.C. and Wang, L.M., Nucl. Instrum. Meth. B65, 319 (1992).Google Scholar
30. Lumpkin, G.R. and Ewing, R.C., Phys. Chem. Minerals 16, 2 (1988).Google Scholar
31. Meldrum, A., Boatner, L.A., Weber, W.J. and Ewing, R.C., Geochimica et Cosmochimica Acta 62, 2509 (1998).Google Scholar
32. Lumpkin, G.R., J. Nucl. Mater. 289, 136 (2001).Google Scholar
33. Wang, L.M. and Ewing, R.C., MRS Bulletin Vol. XVII [5], 38 (1992)Google Scholar
34. Weber, W.J., Nucl. Instrum. Meth. B166–167, 98 (2000).Google Scholar
35. Begg, B.D., Hess, N.J., Weber, W.J., Devanathan, R., Icenhower, J.P., Thevuthasan, S., and McGrail, B.P., J. Nucl. Mater. 288, 208 (2001).Google Scholar
36. Weber, W.J. and Ewing, R.C., Science 289 [5487], 2051 (2000).Google Scholar
37. Weber, W.J., Devanathan, R., Meldrum, A., Boatner, L.A., Ewing, R.C., and Wang, L.M., in Microstructural Processes in Irradiated Materials, edited by Zinkle, S.J., Lucas, G.E., Ewing, R.C., and Williams, J.S. (Mater. Res. Soc. Symp. Proc. 540, Warrendale, PA, 1999), p. 367.Google Scholar
38. Weber, W.J., Jiang, W., Thevuthasan, S., Williford, R.E., Meldrum, A. and Boatner, L.A., in Defects and Surface-Induced Effects in Advanced Perovskites, edited by Borstel, G., Krumins, A. and Millers, D. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000), p. 317.Google Scholar
39. Meldrum, A., Boatner, L.A., Weber, W.J., and Ewing, R.C., J. Nucl. Mater. 300, 242 (2002).Google Scholar
40. Begg, B.D., Hess, N.J., Weber, W.J., Conradson, S.D., Schweiger, M.J., and Ewing, R.C., J. Nucl. Mater. 278, 212 (2000).Google Scholar
41. Woolfrey, J.L., Reeve, K.D., and Cassidy, D.J., J. Nucl. Mater. 108 & 109, 739 (1982).Google Scholar
42. Mitamura, H., Matsumoto, S., M.Stewart, W.A., Tsuboi, T., Hashimoto, M., Vance, E.R., Hart, K.P., Togashi, Y., Kanazawa, H., Ball, C.J., and White, T.J., J. Am. Ceram. Soc. 77, 2255 (1994).Google Scholar
43. Smith, K.L., Lumpkin, G.R., Blackford, M.G., and Vance, E.R., in Scientific Basis for Nuclear Waste Management XXII, edited by Wronkiewicz, D.J. and Lee, J.H. (Mater. Res. Soc. Symp. Proc. 556, Warrendale, PA, 1999), p. 1185.Google Scholar
44. Weber, W.J., Ewing, R.C., and Meldrum, A., J. Nucl. Mater. 250, 147 (1997).Google Scholar
45. Wang, S.X., Wang, L.M., Ewing, R.C. and K.Kutty, V.G., in Microstructural Processes in Irradiated Materials, edited by Zinkle, S.J., Lucas, G.E., Ewing, R.C., and Williams, J.S. (Mater. Res. Soc. Symp. Proc. 540, Warrendale, PA, 1999), p. 355.Google Scholar
46. Wang, S.X., Begg, B.D., Wang, L.M., Ewing, R.C., Weber, W.J., and Kutty, K.V. Govidan, J. Mater. Res. 14, 4470 (1999).Google Scholar
47. Begg, B.D., Hess, N.J., McCready, D.E., Thevuthasan, S., and Weber, W.J., J. Nucl. Mater. 289, 188 (2001).Google Scholar
48. Sickafus, K.E., Minervini, L., Grimes, R.W., Valdez, J.A., Ishimaru, M., Li, F., McClellan, K.J., and Hartmann, T., Science 289, 748 (2000).Google Scholar
49. Williford, R.E. and Weber, W.J., J. Nucl. Mater. 299, 140 (2001).Google Scholar
50.“Decades of Discovery” Home Page, U.S. Department of Energy, http://www.sc.doe.gov/feature_article_2001/June/Decades/index.html.Google Scholar
51. Ewing, R.C., Haaker, R.F., and Lutze, W., in Scientific Basis for Nuclear Waste Management V, edited by Lutze, W. (Elsevier Science, New York, 1982), p. 389.Google Scholar
52. Helean, K.B., Lutze, W., and Ewing, R.C., in Environmental Issues and Waste Management Technologies IV, edited by Marra, J.C. and Chandler, G.T. (The American Ceramic Society, Ceramic Transactions Vol. 93, Westerville, OH, 1999), p. 297.Google Scholar