Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T04:16:08.741Z Has data issue: false hasContentIssue false

Radiation Damage Of InGaAs Photodiodes By High Energy Particles

Published online by Cambridge University Press:  10 February 2011

T. Kudou
Affiliation:
Kumamoto National College of Technology, 2659-2 Nishigoshi Kumamoto, 861-11 Japan
H. Ohyama
Affiliation:
Kumamoto National College of Technology, 2659-2 Nishigoshi Kumamoto, 861-11 Japan
E. Simoen
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
C. Claeys
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
Y. Takami
Affiliation:
Rikkyo University, 2-5-1 Nagasaka Yokosuka Kanagawa, 240-01 Japan
K. Shigaki
Affiliation:
Kumamoto National College of Technology, 2659-2 Nishigoshi Kumamoto, 861-11 Japan
A. Fujii
Affiliation:
Kumamoto University, 39-1 Kurokami Kumamoto, 860 Japan
H. Sunaga
Affiliation:
Takasaki JAERI, 1233 Watanuki Takasaki Gunma, 370-12 Japan
Get access

Abstract

Results are presented of a study on the performance degradation and the induced lattice defects of In0.53Ga0.47As p-i-n photodiodes, subjected to 220-MeV carbon particles. The effects on both the dark current and the photo-current are investigated as a function of the carbon fluence and correlated with DLTS results. The device degradation is compared with the one observed after exposure to 1-MeV electrons, 1-MeV fast neutrons and 20-MeV alpha rays, respectively. The differences in damage coefficients will be explained in view of the calculated number of knock-on atoms and the nonionizing energy loss (NIEL). The recovery behavior of the diode performance and of the induced deep levels by isochronal annealing is also reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Walters, R. J., Shaw, G. J., Summers, G. P., Burke, E. A and Messenger, S. R., IEEE Trans. Nucl. Sci., 39, pp. 22572264 (1992).Google Scholar
2. Shaw, G. J., Walters, R. J., Messenger, S. R. and Summers, G. P., J. Appl. Phys., 73, pp. 16291635 (1993).Google Scholar
3. Ohyama, H., Vanhellemont, J., Takami, Y., Hayama, K., Kudou, T., Sunaga, H., Semicond. Sci. Technol., 11, pp. 14611463 (1996).Google Scholar
4. Ohyama, H., Vanhellemont, J., Takami, Y., Hayama, K., Sunaga, H., Poortmans, J. and Caymax, M., IEEE Trans. Nucl. Sci., 43, p. 30193026 (1996).Google Scholar
5. Ohyama, H., Simoen, E., Claeys, C., Vanhellemont, J., Takami, Y., Kudou, T. and Sunaga, H., Solid State Phenomena, 57–58, pp. 257262 (1997).Google Scholar
6. Ohyama, H., Vanhellemont, J., Takami, Y., Hayama, K., Sunaga, H., Poortmans, J. and Caymax, M., Appl. Phys. Lett., 69, pp. 24292431 (1996).Google Scholar