Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T19:14:35.208Z Has data issue: false hasContentIssue false

Quaternary AlInGaN MQWs for Ultraviolet LEDs

Published online by Cambridge University Press:  21 March 2011

J. P. Zhang
Affiliation:
Dept. of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A
J. W. Yang
Affiliation:
Dept. of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A
V. Adivarahan
Affiliation:
Dept. of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A
H. M. Wang
Affiliation:
Dept. of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A
Q. Fareed
Affiliation:
Dept. of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A
E. Kuokstis
Affiliation:
Dept. of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A
A. Chitnis
Affiliation:
Dept. of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A
M. Shatalov
Affiliation:
Dept. of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A
G. Simin
Affiliation:
Dept. of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A
M. Asif Khan
Affiliation:
Dept. of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A
R. Gaska
Affiliation:
Sensor Electronic Technology, Inc., Latham, NY 12110, U.S.A
M. S. Shur
Affiliation:
Sensor Electronic Technology, Inc., Latham, NY 12110, U.S.A
Get access

Abstract

We report a pulsed atomic layer epitaxy (PALE) growth technique for quaternary AlInGaN films for ultraviolet optoelectronic applications. Using the PALE approach high quality quaternary AlInGaN/AlInGaN multiple quantum wells (MQWs) were successfully grown over sapphire substrates. From X-ray diffraction, atomic force microscopy, and photoluminescence study, a high structural and optical quality was established for the AlInGaN MQWs. Incorporating the PALE grown quaternary MQWs as the active layer of light emitting diode (LED) on sapphire or SiC substrates we also demonstrated room temperature deep ultraviolet electroluminescence under dc and pulsed electrical pumping. The peak emission wavelength can be tuned from 305 nm to 340 nm with spectrum FWHM of about 20 nm by varying the alloy compositions of the quaternary AlInGaN active layers using PALE. Comparative study of LEDs over sapphire and SiC substrates was also done in order to determine the influence of epilayer design on the performance parameters and the role of the substrate absorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tamura, T., Setomoto, T. and Taguchi, T., J. Lumin. 87–89, (2000) 1180.Google Scholar
2. Akasaki, I. and Amano, H., Jpn. J. Appl. Phys. 36, (1997) 5393.Google Scholar
3. Sato, Y., Takahashi, N. and Sato, S., Jpn. J. Appl. Phys. 35, (1996) L838.Google Scholar
4. Hide, F., Kozodoy, P., Denbaars, S. P., and Heeger, A. J., Appl. Phys. Lett. 70, (1997) 2664.Google Scholar
5. Nishida, T., Saito, H., and Kobayashi, N., Appl. Phys. Lett. 78, (2001) 399.Google Scholar
6. Kinoshita, A., Hirayama, H., Ainoya, M., Aoyagi, Y., Hirata, A., Appl. Phys. Lett. 77, (2000) 175.Google Scholar
7. Otsuka, N., Tsujimura, A., Hasegawa, Y., Sugahara, G., Kume, M., Ban, Y., Jpn. J. Appl. Phys. 39, (2000) L445.Google Scholar
8. Khan, M. Asif, Yang, J. W., Simin, G., Gaska, R., Shur, M. S., Bykhovsky, A., Appl. Phys. Lett. 75, (1999) 2806.Google Scholar
9. Khan, M. Asif, Yang, J. W., Simin, G., Gaska, R., Shur, M. S., Loye, Hans-Conrad zur, Tamulaitis, G., Zukauskas, A., Smith, D. J., Chandrasekhar, D., and Bicknell-Tassius, R., Appl. Phys. Lett. 76, (2000) 1161.Google Scholar
10. Zhang, J. P., Yang, J. W., Simin, G., Shatalov, M., Khan, M. Asif, Shur, M. S., Gaska, R., Appl. Phys. Lett. 77, (2000) 2668.Google Scholar
11. Shatalov, M., Chitnis, A., Adivarahan, V., Lunev, A., Zhang, J., Yang, J. W., Fareed, Q., Simin, G., Zakheim, A., Khan, M. Asif, Gaska, R., Shur, M. S., Appl. Phys. Lett. 78, (2001) 817.Google Scholar
12. Tamulaitis, G., Kazlauskas, K., Jursenas, S., Zukauskas, A., Khan, M. A., Yang, J. W., Zhang, J., Simin, G., Shur, M. S., and Gaska, R., Appl. Phys. Lett. 77, (2000) 2136.Google Scholar
13. Nagahama, S., Yanamoto, T., Sano, M. and Mukai, T., Jpn. J. Appl. Phys. 40, (2001) L788.Google Scholar
14. Zhang, J., Adivarahan, V., Wang, H. M., Fareed, Q., Koukstis, E., Chitnis, A., Shatalov, M., Yang, J. W., Simin, G., Khan, M. Asif, Shur, M., and Gaska, R., Jpn. J. Appl. Phys. 40, (2001) L921.Google Scholar
15. Zhang, J. P., Kuokstis, E., Fareed, Q., Wang, H., Yang, J. W., Simin, G., Khan, M. Asif, Gaska, R. and Shur, M. S., Appl. Phys. Lett. 79, (2001) 925.Google Scholar