Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-07T14:43:09.953Z Has data issue: false hasContentIssue false

Quasi-Schottky Diodes on (n)In.53Ga.47as with Barrier Heights of 0.6 eV

Published online by Cambridge University Press:  26 February 2011

M. Marso
Affiliation:
Institut für Schient- und Ionentechnik., Forschungszentrum Jülich, D-5170 Jülien, Germany
P. Kordoš
Affiliation:
Institut für Schient- und Ionentechnik., Forschungszentrum Jülich, D-5170 Jülien, Germany
R. Meyer
Affiliation:
Institut für Schient- und Ionentechnik., Forschungszentrum Jülich, D-5170 Jülien, Germany
H. Lüth
Affiliation:
Institut für Schient- und Ionentechnik., Forschungszentrum Jülich, D-5170 Jülien, Germany
Get access

Abstract

The modification and control of the Schottky barrier height on (n)InGaAs is an important tool at the device preparation as the barrier height is very low, øB° = 0.2 eV. We report about the Schottky barrier enhancement on (n)InGaAs by thin fully depleted surface layers of high doped (p+)InGaAs. Structures with different thicknesses of (p+)InGaAs in the range from 8 to 80 nm were grown by LP MOVPE technique and quasi-Schottky diodes with different contact areas were prepared using titanium as a barrier metal. I-V and I-T characteristics were measured and analysed to obtain basic parameters of prepared diodes, i. e. ideality factor n, effective barrier height øB, series resistance Rgand reverse current density JR (1V). The barrier height enhancement increases with the thickness of the (p+)-layer. Effective barrier heights of øB>0.6 eV, i.e. higher than reported until now, can be obtained with the surface layers of (p+)InGaAs with thicknesses exceeding 25 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kajiyama, K., Mizushita, Y. and Sakata, S., Appl. Phys. Lett. 23, 458 (1973)CrossRefGoogle Scholar
2. Morgan, D. V. and Frey, J., Electron. Lett. 14, 737 (1978)Google Scholar
3. Chan, W. K., Cox, H. M., Abeles, J. H. and Kelty, S. P., Electron. Lett. 23, 1346 (1987)Google Scholar
4. Licata, T. J., Schmidt, M. T., Podlesnik, D. V., Liber-man, V. and Osgood, R. M. Jr, J. Electron. Mat. 19, 1239 (1990)Google Scholar
5. Hong, W. P., Chang, G. K. and Bhat, R., IEEE Trans. Electron Devices ED–36, 659 (1989)CrossRefGoogle Scholar
6. Soole, J. B. D., Schumacher, H., LeBlanc, H. P., Bhat, R and Koza, M. A., Appl. Phys. Lett. 55, 729 (1989)Google Scholar
7. Kordoš, P., Novák, J., Kayser, O. and Heime, K., phys. stat. sol. (a) 127, K25 (1991)Google Scholar
8. Kordoš, P., Marso, M., Meyer, R. and Lüth, H., to be publ.Google Scholar
9. Chen, C. Y., Cho, A. Y., Cheng, K. Y. and Garbinski, P. A., App. Phys. Lett. 40, 401 (1982)Google Scholar
10. Kim, J. H., Li, S. S. and Figueroa, L., Electr. Lett. 24, 687 (1988)Google Scholar
11. Kordos, P., Marso, M., Meyer, R. and Lüth, H., Electron. Lett. 27, 1759 (1991)CrossRefGoogle Scholar
12. Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (Wiley-Interscience, New York, 1981), p. 295 Google Scholar