Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-21T17:37:37.337Z Has data issue: false hasContentIssue false

Quasicrystal approximants with novel compositions and structures

Published online by Cambridge University Press:  01 February 2011

M. Mihalkovič
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
M. Widom
Affiliation:
also at:Institute of Physics, Slovak Academy of Sciences, 84228 Bratislava, Slovakia
Get access

Abstract

We identify several new quasicrystal approximants in alloy systems in which quasicrystals have not been previously reported. Some occur in alloys with large size contrast between the constituent elements, either containing small Boron atoms, or large Ca/Eu atoms, leading to quasicrystal structures quite different from currently known systems where the size contrast is smaller. Another group of the approximants are layered Frank-Kasper structures, demonstrating competition between decagonal and dodecagonal ordering within this family of structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Elser, V. and Henley, C.L., Phys. Rev. Lett. 55, 2883–6 (1985).Google Scholar
2. Gao, M., Shifflet, G., Mihalkovič, M. and Widom, M., unpublished, (2003).Google Scholar
3. Mihalkovič, M. and Widom, M., in preparation, (2003).Google Scholar
4. Villars, P., Prince, A. and Okamoto, H., Handbook of ternary alloy phase diagrams, ASM International, Materials Park, Ohio, (1995).Google Scholar
5. Villars, P., Pearson's Handbook, Desk Edition, ASM International, Materials Park, Ohio, (1997).Google Scholar
6. Binary Alloy Phase Diagrams, edited by Massalski, T.B., et al., ASM International, Materials Park, Ohio, (1990).Google Scholar
7. Desk Handbook: Phase Diagrams for Binary Alloys, edited by Okamoto, H., ASM International, Materials Park, Ohio, (2000).Google Scholar
8. Kresse, G. and Joubert, J., Phys. Rev. B 59, 1758 (1999).Google Scholar
9. Perdew, J.P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
10. Kresse, G. and Hafner, J., Phys. Rev. B 47, RC558 (1993).Google Scholar
11. Kresse, G. and Furthmuller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
12. Schweitzer, K. and Jung, W., Z. Anorg. Allg. Chemie 530, 127134 (1985).Google Scholar
13. Favio, P. et al, Micros. Microan. Microstruct. 7, 225–34 (1996).Google Scholar
14. Takeda, M. et al, 5th International Conference on Quasicrystalš, edited by edited by Okamoto, H.,, World Scientific, Singapore, Materials Park, Ohio, (1995).Google Scholar
15. Weygand, C. and Verger-Gaugry, J.-L., C. R. Acad Sci. II 320, 253–7 (1995).Google Scholar
16. Kimura, K., Mat. Sci. Eng. B 19, 6771 (1993).Google Scholar
17. Zhu, W.-J. and Henley, C. L., Europhys. Lett. 51, 133–9 (2000).Google Scholar
18. Boustani, I., Quandt, A. and Kramer, P., Europhys. Lett. 36, 583–8 (1996).Google Scholar
19. Mihalkovič, M. and Widom, M., Unpublished, (2003).Google Scholar
20. Nienhuis, B., Phys. Rep. 301, 271–92 (1998).Google Scholar
21. Oxborrow, M. and Mihalkovič, M., Aperiodic '97, edited by Boissieu, M. de, Verger-Gaugry, J.-L. and Currat, R., World Scientific, Materials Park, Ohio, (1997).Google Scholar
22. Henley, C. L. and Elser, V., Phil. Mag. B 53, L59 (1986).Google Scholar
23. Roth, J. and Henley, C. L., Phil. Mag. A 75, 861 (1997).Google Scholar