Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T09:55:30.333Z Has data issue: false hasContentIssue false

Quantum-Well Lasers for High-Speed Optical Information Processing

Published online by Cambridge University Press:  21 February 2011

M. C. Wu
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Y. K. Chen
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
T. Tanbun-Ek
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R. A. Logan
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Monolithic colliding pulse mode-locked (CPM) multiple quantum well lasers generating optical pulses as short as 600 femtoseconds are reported. The CPM laser is built on a single chip of InGaAs/InGaAsP multiple quantum well laser. The pulse repetition rates are synchronized with an rf synthesizer up to 40 GHz in hybrid mode-locking scheme. In passive mode-locking scheme, a record high repetition rate of 350 GHz has been achieved. All the sub-picosecond pulses obtained have pulse shapes of sech2 and transform-limited timebandwidth products between 0.30 to 0.34. This new optical source is very useful for ultra-high speed optical switching and optical logic in optical fibers, and ultra-long distance optical soliton transmissions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For example, see Lau, K.Y. and Yariv, A., in Semiconductors and Semimetals, edited by Tsang, W. T., (Academic, New York, 1985) pp. 70152.Google Scholar
2. Downey, P.M., Bowers, J.E., Tucker, R.S. and Agyekum, E., IEEE J. of Quantum Electron. QW–23, 1039 (1987)Google Scholar
3. For example, see van der Ziel, J.P., in Semiconductors and Semimetals, edited by Tsang, W. T., (Academic, New York, 1985) pp. 168.Google Scholar
4. Lau, K.Y., Appl. Phys. Lett., 52, 2214 (1988).Google Scholar
5. Tucker, R.S., Koren, U., Raybon, G., Burrus, C.A., Miller, B.I., Koch, T.L., Eisenstein, G., and Shahar, A., Electron. Lett., 25, 622 (1989).Google Scholar
6. Vasil'ev, P.P. and Sergeev, A.B., Electron. Lett., 25, 1050 (1989).Google Scholar
7. Morton, P.A., Bowers, J.E., Koszi, L.A., Soler, M., Lopata, J., and Wilt, D.P., Appl. Phys. Lett., 56, 111 (1990).Google Scholar
8. Sanders, S., Eng, L., Paslaski, J., and Yariv, A., Appl. Phys. Lett. 56, 310 (1990).Google Scholar
9. Wu, M.C., Chen, Y.K., Tanbun-Ek, T., Logan, R.A., Chin, M.A., and Raybon, G., Appl. Phys. Lett., 57, 759 (1990)Google Scholar
10. Chen, Y.K., Wu, M.C., Tanbun-Ek, T., Logan, R.A., and Chin, M.A. Appl. Phys. Lett., 58, 1253 (1991)Google Scholar
11. Tsang, W.T., in Semiconductors and Semimetals, edited by Dingle, R., (Academic, New York, 1987), Vol.24, pp. 397458.Google Scholar
12. Arakawa, Y. and Yariv, A., J. Quantum Electro. QE–22, 1887 (1986)Google Scholar
13. Silberberg, Y., Smith, P.W., Eilenberger, D.J., Miller, D.A.B., Gossard, A.C., and Wiegmann, W., Opt. Lett., 9, 507 (1984).Google Scholar
14. Eisenstein, G., Wiesenfeld, J.M., Wegener, M., Sucha, G., Chemla, D.S., Weiss, S., Raybon, G., and Koren, U., Appl. Phys. Lett., 58, 158 (1991).Google Scholar
15. Haus, H.A., J. Quantum Electron. QE–11, 736 (1975)Google Scholar
16. Fork, R.L., Greene, B.I., and Shank, C.V., Appl. Phys. Lett., 38, 671 (1981).CrossRefGoogle Scholar
17. Tanbun-Ek, T., Logan, R.A., Temkin, H., Berthold, K., Levi, A.F.J., and Chu, S.N.G., Appl. Phys. Lett., 55, 2283 (1989).CrossRefGoogle Scholar