Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-11T11:18:07.615Z Has data issue: false hasContentIssue false

Quantum Well Intermixing for Optoelectronic Applications

Published online by Cambridge University Press:  10 February 2011

C. Jagadish
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia (cxj 109@rsphysse.anu.edu.au)
H. H. Tan
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia (cxj 109@rsphysse.anu.edu.au)
S. Yuan
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia (cxj 109@rsphysse.anu.edu.au)
M. Gal
Affiliation:
School of Physics, University of New South Wales, Sydney, NSW 2052, Australia
Get access

Abstract

Ion implantation induced intermixing of GaAs-AlGaAs quantum well structures with H, O and As ions is investigated by low temperature photoluminescence. Large energy shifts are observed in all the cases, though recovery of photoluminescence intensities in proton case is more significant than others. Energy shifts are linear with proton dose and no saturation was observed even up to a dose of ∼ 5 × 1016 cm−2. Saturation in energy shifts are seen for both As and 0 ions at high doses. Energy shifts are also found to be dependent on Al composition of the barriers. Wavelength shifted quantum well lasers are fabricated with energy shifts of about 5 nm with no changes in threshold current using proton implantation. Anodic oxide induced intermixing of GaAs-AlGaAs quantum wells is demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Li, E.H., Ed, Quantum Well Intermixing for Photonics, (SPIE Milestone Series, Bellingham, 1997).Google Scholar
2. Deppe, D.G. and Holonyak, N., Jr., J. Appl. Phys. 64, R93 (1988) and references there in.Google Scholar
3. Marsh, J.H., Semicond. Sci. Technol. 8, 1136 (1993) and references there in.Google Scholar
4. Li, E.H., Weiss, B.L. and Chan, K.S., Phys. Rev. B46, 15181 (1994).Google Scholar
5. Yuan, S., Frank, N., Bauer, G. and Kriechbaum, M., Phys. Rev. B50, 5286 (1994).Google Scholar
6. Kapon, E., stoffel, N.G., Bobisz, E.A. and Bhat, R., Appl. Phys. Lett. 52, 251 (1988).Google Scholar
7. Wakatsuki, A., Iwamura, H., Suzuki, Y., Miyazawa, T. and Mikami, O., IEEE Photon. Technol. Lett. 3, 905 (1991).Google Scholar
8. Wolf, T., Shieh, C.L., Engelmann, R., Alavi, K. and Mantz, J., Appl. Phys. Lett. 55, 1412 (1989).Google Scholar
9. Noel, J. P., Melville, D., Jones, T., Shepherd, F.R., Miner, C.J., Puetz, N., Fox, K., Poole, P.J., Feng, Y., Koteles, E.S., Charbonneau, S., Goldberg, R.D. and Mitchell, I.V., Appl. Phys. Lett. 69, 3516 (1996).Google Scholar
10. Nagai, Y., Shigihara, K., Karakida, S., Karimoto, S., Otsubo, M. and Ikeda, K., IEEE J. Quantum Electron. 31, 1364 (1996).Google Scholar
11. Larkins, E.C., Benz, W., Esquivias, I., Rothemund, W., Bauemler, M., Weisser, S., Schonfelder, A., Fleissner, J., Jantz, W., Rosenzweig, J. and Ralston, J.D., IEEE Photon. Technol. Lett. 7, 16 (1995).Google Scholar
12. Burkner, S., Ralston, J.D., Weisser, S., Rosenzweig, J., Larkins, E.C., Sah, R.E. and Fleisner, J., IEEE Photon. Technol. Lett. 7, 741 (1995).Google Scholar
13. Hofstetter, D., Zappe, H.P., Epler, J.E. and Riel, P., Appl. Phys. Lett. 67, 1978 (1995).Google Scholar
14. Ooi, B. S., Ayling, S.G., Bryce, A.C. and Marsh, J.H., IEEE Photon. Technol. Lett. 7, 944 (1995).Google Scholar
15. Hu, S.Y., Peters, M.G., Young, D.B., Gossard, A.C. and Coldren, L.a., IEEE Photon. Technol. Lett. 7,712 (1995).Google Scholar
16. Yamada, N. and Harris, J.S., Jr., Appl. Phys. Lett. 60, 2463 (1992).Google Scholar
17. Welch, D.F., Streifer, W., Thornton, R.L. and Paoli, T., Electron.Lett. 23, 525 (1987).Google Scholar
18. McKee, A., McLean, C.J., Lullo, G., Bryce, A.C., De La Rue, R.M., Marsh, J.H. and Button, C.C., IEEE J. Quantum Electron. 33, 45 (1997).Google Scholar
19. Ramdane, A., Krauz, P., Rao, E.V., Hamoudi, A., Ougazzaden, A., Robein, D., Gloukhian, A. and Carre, M., IEEE Photon. Technol. Lett. 7, 1016 (1995).Google Scholar
20. Andrew, S.R., Marsh, J.H., Holland, M.C. and Ken, A.H., IEEE Photon. Technol. Lett. 4, 426 (1992).Google Scholar
21. Yu, S.F. and Li, E.H., IEEE Photon. Technol. Lett. 8,482 (1996).Google Scholar
22. Lee, A.S.W. and Li, E.H., Appl. Phys. Lett. 69, 3581 (1996).Google Scholar
23. Vieu, C., Defect and Diffusion Forum, 119–120, 127 (1995).Google Scholar
24. Laidig, W.D., Holonyak, N., Jr., Camras, M.D., Hess, K., Coleman, J.J., Dapkus, P.D. and Bardeen, J., Appl. Phys. Lett. 38, 776 (1981).Google Scholar
25. Coleman, J.J., Dapkus, P.D., Kirkpatrick, C.G., Camras, M.D. and Holonyak, N., Jr., Appl. Phys. Lett. 40, 904 (1982).Google Scholar
26. Hirayama, Y., Horikoshi, Y. and Okamoto, H., Jpn. J. Appl. Phys. 23, 1568 (1984).Google Scholar
27. Lee, S.T., Braunstein, G., Fellinger, P., Kahen, K.B. and Rajeswaran, G., Appl. Phys. Lett. 53, 2531 (1988).Google Scholar
28. Zucker, E.P., Hashimoto, A., Fukunaga, T. and Watanabe, N., Appl. Phys. Lett. 54, 564 (1989).Google Scholar
29. Guido, L.J., Hsieh, K.C., Holonyak, N., Jr., Kaliski, R.W., Eu, V. Feng, M. and Burnham, R.D., J. Appl. Phys. 61, 1329 (1987).Google Scholar
30. Burkner, S., Maier, M., Larkins, E.C., Rothemound, W., O'Reilly, E.P. and Ralston, J.D., J. Electron. Mater. 24, 805 (1995).Google Scholar
31. Gontijo, I., Krauss, T., Marsh, J.H. and De La Rue, R.M., IEEE J. Quantum Electron. 30, 1189 (1994).Google Scholar
32. Pearton, S. J., Mater. Sci. Rep. 4, 313 (1990).Google Scholar
33. Tan, H.H. and Jagadish, C., Appl. Phys. Lett. 71,2680 (1997).Google Scholar
34. Yuan, S., Kim, Y., Jagadish, C., Burke, P.T., Gal, M., Zou, J., Cai, D.Q., Cockayne, D.J.H. and Cohen, R.M., Appl. Phys. Lett. 70, 1269 (1997).Google Scholar
35. Yuan, S., Kim, Y., Tan, H.H., Jagadish, C., Burke, P.T., dao, L.V., Gal, M., Chan, M.C.Y., Li, E.H., Zou, J., Cai, D.Q., Cockayne, D.J.H. and Cohen, R.M., J. Appl. Phys. (in Press – 1998).Google Scholar
36. Kim, Y., Yuan, S., Leon, R., Jagadish, C., Gal, M., Johnston, M., Phillips, M.R., Stevens-Kalceff, M., Zou, J. and Cockayne, D.J.H., J. Appl. Phys. 80, 5014 (1996).Google Scholar
37. Grove, M.J., Hudson, D.A., Zory, P.S., Dalby, R.J., Harding, C.M. and Rosenberg, A., J. Appl. Phys. 76, 587 (1994).Google Scholar
38. Ziegler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Range of Ions in Solids, vol.1, Pergamon, New York (1989).Google Scholar
39. Hay, H.J., FASTRIM is a modified version of TRIM85–90 which takes into account the multilayer target (interafces) problems inherent with TRIM (Unpublished).Google Scholar
40. Tan, H.H., Williams, J.S., Jagadish, C., Burke, P.T. and Gal, M., Appl. Phys. Lett. 68, 2401 (1996).Google Scholar
41. Tan, H.H., Williams, J.S., Jagadish, C., Burke, P.T. and Gal, M., Mater. Res. Soc. Symp. Proc. 396, 823 (1996).Google Scholar
42. Tan, H.H., Ph.D. Thesis, Australian National University, Canberra (1996).Google Scholar
43. Cohen, R.M., Mater. Sci. & Eng. Rep. 20, no. 4–5 (1997).Google Scholar