Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T00:10:02.366Z Has data issue: false hasContentIssue false

Quantitative Analysis of Displacement at 90° Domain Boundaries In BaTiO3 and PbTiO3

Published online by Cambridge University Press:  10 February 2011

Frances M. Ross
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720
Roar Kilaas
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720
Etienne Snoeck
Affiliation:
CEMES-CNRS, 29 rue Jeanne Marvig, F-31055 Toulouse Cedex, France
Martin Hÿtch
Affiliation:
CECM-CNRS, 15 rue G. Urbain, 94407 Vitry-sur-Seine, France
Alain Thorel
Affiliation:
Centre des Matériaux P-M. Fourt de l'ENSMP, BP 87, 91003 Evry Cedex, France
Laurent Normand
Affiliation:
Centre des Matériaux P-M. Fourt de l'ENSMP, BP 87, 91003 Evry Cedex, France
Get access

Abstract

In this paper we discuss the measurement of long range displacement fields associated with 90° domain boundaries in the ferroelectric ceramics BaTiO3 and PbTiO3. We have calculated displacement fields from high resolution lattice images by two techniques: firstly, measuring the positions of peaks in the images, and secondly, using a geometric phase analysis technique to magnify small lattice distortions. We describe the results and consider the complementary use of Fresnel contrast analysis to characterize local strain and electric fields near the boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lines, M. E. and Glass, A. M., Principles and Application of Ferroelectrics and Related Materials, Clarendon Press, Oxford (1977)Google Scholar
2. Bursill, L. Ay. and Lin, P. J., Ferroelectrics 70, 191 (1991)Google Scholar
3. Tsai, F., Khiznichenko, V. and Cowley, J. M., Ultramic. 45, 55 (1992)Google Scholar
4. Stemmer, S., Streiffer, S. K., Ernst, F. and Rühle, M., Phil. Mag. A. 71, 713 (1995)Google Scholar
5. Aizu, K., Phys. Rev. B 2, 754 (1970)Google Scholar
6. Remaut, G., Gevers, R. and Amelinckx, S., Phys. Stat. Sol. 20, 613 (1967)Google Scholar
7. Normand, L., Kilaas, R., Montardi, Y. and Thorel, A., Proceedings of the Fourth Euro-Ceramics, edited by Gusmano, G. and Traversa, E., Gruppo Editoriale Faenza S.p.A, 5, 241 (1995)Google Scholar
8. Normand, L., Kilaas, R., Montardi, Y. and Thorel, A., Materials Science Forum 207–209 (1996), 317 Google Scholar
9. Jacobs, A. E., Phys. Rev. B 31, 5984 (1985)Google Scholar
10. Hytch, M. J. and Gandais, M., Phil Mag A 72, 619 (1995)Google Scholar
11. Hytch, M. J., in Scanning Microscopy Supplement 10: Signal and Image Processing in Microscopy and Microanalysis, edited by Hawkes, P. (Scanning Microscopy International, Chicago, 1996)Google Scholar
12. Tsai, F. and Cowley, J. M., Appl. Phys. Lett. 65, 1906 (1994)Google Scholar
13. Torrè, J., Roucau, C. and Ayroles, R., Phys. Stat. Sol. (a) 70, 659 (1982); 71, 193 (1982)Google Scholar
14. Ness, J. N., Stobbs, W. M. and Page, T. F., Phil. Mag. A 54, 679 (1986)Google Scholar
15. Ross, F. M. and Stobbs, W. M., Phil. Mag. A 60, 1 (1991)Google Scholar