Hostname: page-component-68945f75b7-z8dg2 Total loading time: 0 Render date: 2024-08-06T05:15:44.775Z Has data issue: false hasContentIssue false

Quantification of Water-Content of Simulated Nuclear Waste Glasses Using Nuclear Reaction Measurements

Published online by Cambridge University Press:  10 February 2011

S. K. Sundaram
Affiliation:
Pacific Northwest National Laboratory Richland, WA 99352, sk.sundaram@pnl.gov
S. Thevuthasan
Affiliation:
Pacific Northwest National Laboratory Richland, WA 99352, sk.sundaram@pnl.gov
D. E. McCready
Affiliation:
Pacific Northwest National Laboratory Richland, WA 99352, sk.sundaram@pnl.gov
Get access

Abstract

Water content of glasses is an important factor in glass manufacture. In the case of slurryfed processing of waste glass melters, the water content of waste glasses may change the waste form properties significantly. A reliable, non-contact and quantitative measurement technique, with a spatial resolution of about 2-mm was used to determine the concentration of dissolved water molecules in simulated nuclear waste glasses. The 19F resonant reaction was used. The 1H (19F, αγ)16O reaction requires a resonance energy that is available by use of a 6.471 MeV19F beam. A series of ten segments of slurry-fed, joule-heated, research-scale melter tests were conducted to determine the redox effects on processing of various feeds. Representative glass samples were collected at the middle of each segment. Their hydrogen contents were measured. The hydrogen content was correlated to the feed processing and redox of the glasses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Murray, Raymond L. in Understanding Radioactive Waste, Battelle Press, Fourth Edition, 1994, pp. 71158.Google Scholar
2. Khabibullaev, P. K. and Skorodumov, G.G. in Determination of Hydrogen in Materials, Nuclear Physics Methods, Springer-Verlag, Berlin, Germany, 1989.Google Scholar
3. Lanford, W. A., Nuclear Instrum. Methods in Phys. Res., B66, p. 65 (1992); W. A. Lanford in Handbook of Modern Ion Beam Materials Analysis, Editors: J. R. Tesmer and M. A. Nastasi, Materials Research Society, Pittsburgh, PA 15237, 1994, pp. 193–204.Google Scholar
4. Brown, J. T. and Kobayashi, H., Glass Ind., p. 16 (1996); R. F. Barthlow, J. Non-Cryst. Solids, 56, p. 331 (1983).Google Scholar
5. Brown, J. T. and Kobayashi, H., Am. Ceram. Soc. Bull., p. 81 (1998); J. M. Jewell, M. S. Spess, and J. E. Shelby, J. Am. Ceram. Soc., 73(1), p. 132 (1990).Google Scholar
6. Shin, D. W. and Tomozawa, M., J. Non-Cryst. Solids, 203, p. 262 (1996).Google Scholar
7. Hosono, H., Kamae, T., and Abe, Y., J. Am. Ceram. Soc., 72(2), p. 294 (1989).Google Scholar
8. Acocella, J., Tomozawa, M., and Watson, E. B., J. Non-Cryst. Solids, 65, p. 355 (1984).Google Scholar
9. Tomozawa, M., Phys. Chem. Of Glasses, 39(2), p.65 (1998).Google Scholar
10. Li, H. and Tomozawa, M., J. Non-Cryst. Solids, 168, p. 287 (1994).Google Scholar
11. Han, W-T. and Tomozawa, M., J. Non-Cryst. Solids, 127, p. 97 (1991).Google Scholar
12. McGahay, V. and Tomozawa, M., J. Non-Cryst. Solids, 167, p. 127 (1994).Google Scholar
13. Jewell, J. M. and Shelby, J. E., Phys. Chem. Of Glasses, 34(1), p. 24 (1993).Google Scholar
14. Tomozawa, M., Li, H., and Davis, K. M., J. Non-Cryst. Solids, 179, p. 162 (1994).Google Scholar
15. Shaw, C. M. and Shelby, J. E., Phys. Chem. Of Glasses, 34(1), p. 35 (1993).Google Scholar
16. Jewell, J. M., Shaw, C. H., and Shelby, J. E., J. Non-Cryst. Solids, 152, p. 32 (1993).Google Scholar
17. Zotov, N., Yanev, Y., Epelbaum, M., and Konstantinov, L., J. Non-Cryst. Solids, 142, p. 234 (1992).Google Scholar
18. Tomozowa, M., Ito, S., and Molinelli, J., J. Non-Cryst. Solids, 64, p. 269 (1984).Google Scholar
19. Wolf, A. A., Friebele, E. J., and Griscom, D. L., J. Non-Cryst. Solids, 56, p. 349 (19834.Google Scholar
20. Tomozowa, M., Takata, M., Acocella, J., Watson, E. B., Takamori, T., J. Non-Cryst. Solids, 56, p. 343 (1983).Google Scholar
21. Gignac, L. M., Altstetter, C. J., and Brown, S. D., (Materials Research Symposium Proceedings, Vol.104, Pittsburgh, PA, 1985), pp. 107112.Google Scholar
22. Schnatter, K. H., Doremus, R. H., and Lanford, W. A., J. Non-Cryst. Solids, 102, p. 11 (1988).Google Scholar
23. Harder, U., Geipβler, H., Gaber, M., Hehnert, M., Dersch, O., and Rauch, F., Glastech. Ber., 71(1), p. 12 (1998).Google Scholar