Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-16T09:26:58.384Z Has data issue: false hasContentIssue false

Qualitative Model for Fullerene Formation

Published online by Cambridge University Press:  15 February 2011

Tanya Yu. Astakhova
Affiliation:
Institute of Chemical Physics, Russian Acad.Sci., Ul.Kosygina 4, Moscow 117334, Russia
Shagen A. Shaginyan
Affiliation:
Institute of Chemical Physics, Russian Acad.Sci., Ul.Kosygina 4, Moscow 117334, Russia
George A. Vinogradov
Affiliation:
Institute of Chemical Physics, Russian Acad.Sci., Ul.Kosygina 4, Moscow 117334, Russia
Get access

Abstract

A new mechanism of fullerene formation is presented. The ”gas-liquid” transition in the expanding flux of carbon atoms is considered as a necessary initial stage. The transition is not terminated at the liquid phase formation as the more powerful processes of network formation predominate. The process of clusters formation starts with the transformation of three-contact structures to stable two-dimensional networks and is governed by the carbon atoms specificity: three-functionality and high rate of chemical reactions. The resulting network is a flat hexagonal lattice with pentagonal ”defects” bending the surface, the free energy minimum structures being fullerenes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Manolopoulos, D.E., Fowler, P.W., J.Chem.Phys., 96, 7603 (1992)Google Scholar
2. Krätschmer, W., Lamb, L.D., Fostiropoulos, K., Huffman, D.R., Nature (London) 347, 354 (1990)Google Scholar
3. Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., Smalley, R.E., Nature 318, 162 (1985).Google Scholar
4. Wakabayashi, T., Kikuchi, K., Suzuki, S., Shiromaru, H., Achiba, Y., J.Phys.Chem. 98, 3090 (1994).Google Scholar
5. Helden, G.Von, Hsu, M.-T., Kemper, P.R., Bowers, M.T., J.Chem.Phys. 95, 3835 (1991); G.Von Helden, N.G. Gotts, P.R. Kemper, M.T. Bowers, Nature (London) 363, 60 (1993); J.M. Hunter, J.L. Fye, E.J. Roskamp, M.F. Jarrold, J.Phys.Chem. 98, 1810 (1994).Google Scholar
6. Heath, J.R., in Fullerenes: Synthesis, Properties, and Chemistry of Large Carbon Clusters (Am.Chem.Soc., Washington, D.C., 1991).Google Scholar
7. Smalley, R.E., Accnts.Chem.Res. 25, 98 (1992); J.R. Heath, S.C.O'Brien, R.F. Curl, H.W. Kroto, R.E. Smalley, Comments Cond.Matter. Phys. 13, 119 (1987).Google Scholar
8. Kroto, H.W., Walton, D.R.W., Phil.Trans.R.Soc.Lond.A. 343, 103 (1993).Google Scholar
9. Goeres, A., Sedlmayr, E., Chem.Phys.Lett. 184, 310 (1991); T. Wakabayashi, Y. Achiba, Chem.Phys.Lett. 190, 465 (1992).Google Scholar
10. Curl, R.F., Phil.Trans. R.Soc.Lond.A. 343, 19 (1993); H. Schwarz, Angew.Chem., Int.Ed.Engl. 32, 1412 (1993).Google Scholar
11. Xu, C.H., Wang, C.Z., Chan, C.T., and Ho, K.M., Phys.Rev. B47, 9878 (1993).Google Scholar
12. Patashinsky, A.Z., Yacub, I.S., JETP 73, 1954 (1977) (Russian); V.P. Skripov, A.V. Skripov, Usp.Fiz.Nauk 128, 193 (1979) (Russian).Google Scholar
13. Volmer, M., The Kinetics of the New Phase Formation ("Nuaka", Moscow, 1986) (Russian).Google Scholar
14. Koch, S.W., Dynamics of First-Order Phase Transitions in Equilibrium and Nonequilibrium Systems. Lecture Notes in Physics 207, (Springer-Verlag. Berlin, 1984).Google Scholar
15. Cahn, J.W., Hilliard, J.E., J.Chem.Phys. 28, 258 (1958); 31, 668 (1959).Google Scholar
16. Welter, W., Zee, R.J. van, Chem.Rev. 89, 1713 (1989).Google Scholar
17. Vechten, J.A. Van, Keszler, D.A., Phys.Rev. B36, 4570 (1987).Google Scholar
18. Osipov, A.I., Uvarov, A.V., Usp.Fiz.Nauk 162, 1 (1992) (Russian).Google Scholar