Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T01:20:00.106Z Has data issue: false hasContentIssue false

The Pyrolytic Conversion of Perhydropolysilazane into Si3N4: X-Ray Diffraction Analysis

Published online by Cambridge University Press:  15 February 2011

Cheryl R. Blanchard
Affiliation:
Southwest Research Institute, P.O. Drawer 28510, San Antonio, TX 78228
Stuart T. Schwab
Affiliation:
Southwest Research Institute, P.O. Drawer 28510, San Antonio, TX 78228
Get access

Abstract

X-ray diffraction analysis was used to study the pyrolytic conversion of a preceramic polysilazane into Si3N4. Quantitative data for crystallite size, phase composition, and degree of crystallinity versus pyrolysis temperature and atmosphere (N2 and NH3) are presented. Pyrolytic products produced under N2 and NH3 atmospheres consist of microcrystals of silicon and a- and β-Si3N4. Under both atmospheres, a majority of the char is crystalline at ∼ 1270°C, and the entire char is crystallized at 1400°C. Pyrolysis under an NH3 atmosphere produces near stoichiometric Si3N4, while pyrolysis under N2 produces a silicon-rich material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rice, R. W., Am. Cer. Soc. Bull., 62, 899 (1983).Google Scholar
2. Schwab, S. T. and Graef, R. C., NASA CP-3133, Part 2, 781 (1991).Google Scholar
3. Schwab, S. T., Graef, R. C., Pan, Y. M., and Davidson, D. L., NASA CP-3175 Part 2, 721 (1992).Google Scholar
4. Ziegler, G., Heinrich, J., and Wötting, G., J. Mater. Sci., 22, 3041 (1987).Google Scholar
5. Seyferth, D., Wiseman, G. H., Schwark, J.M., Yu, Y.-F., Poutasse, C. A., in Inorganic and Organometallic Polymers. edited by Zeldin, M., Wynne, K. J., and Allcock, H. R., ACS Symposium Series 360 (American Chemical Society, Washington, DC, 1988), p. 143.Google Scholar
6. Arai, M., Sakurada, S., Isoda, T., and Tomizawa, T., Polymer Preprints, 28, 407 (1987).Google Scholar
7. Schwab, S. T., Graef, R. C., Blanchard, C. R., Pan, Y.-M., Davidson, D. L., Maciel, G. E., Hawkins, B. L., Dec, S. F., Davis, M. F., and Lewis, R., Polymer Preprints, 34, 286 (1993).Google Scholar
8. Matsumoto, R.L.K., Mat. Res. Soc. Symp. Proc., Vol. 180, Materials Research Society, Pittsburgh, PA, pp. 797 (1990).Google Scholar
9. Soraru, G. D., Babonneau, F., and MacKenzie, J. D., J. Mater. Sci., 25, 3886 (1990).Google Scholar
10. Schwab, S. T., Blanchard, C. R., and Graef, R. C., J. Mater. Sci. (in press).Google Scholar
11. Blanchard, C. R. and Schwab, S. T., J. Am. Cer. Soc. (submitted, October 1993).Google Scholar
12. Cullity, B. D., Elements of X-Rav Diffraction, (Addison-Wesley, Redding, MA, 1956) p. 262.Google Scholar
13. Gazzara, C. and Messier, D., Am. Cer. Soc. Bull., 56, 777 (1977).Google Scholar
14. Pigeon, R. G. and Varrna, A., J. Mater. Sci. Let., 11, 1370 (1992).Google Scholar
15. Baltá-Calleja, F. J. and Vonk, C. G., X-Ray Scattering of Synthetic Polymers (Elsevier, New York, NY, 1989) p. 175.Google Scholar