Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T18:28:23.571Z Has data issue: false hasContentIssue false

Pyrolysis Studies of Single-Source Precursors to Gallium Phosphide

Published online by Cambridge University Press:  22 February 2011

Kenneth E. Lee
Affiliation:
Research Department, Chemistry Division, Naval Air Warfare Center, Weapons Division, China Lake, California 93555
Charlotte K. Lowe-Ma
Affiliation:
Research Department, Chemistry Division, Naval Air Warfare Center, Weapons Division, China Lake, California 93555
Kelvin T. Higa
Affiliation:
Research Department, Chemistry Division, Naval Air Warfare Center, Weapons Division, China Lake, California 93555
Get access

Abstract

New dialkylgallium dialkylphosphide compounds having the formula [(t- Bu)(R)GaPR'2]n (R = t-Bu, Me3SiC=C; R' = t-Bu, i-Pr, Et; n = 1, 2) were recently prepared and characterized. When R = R' = t-Bu, the compound is a low melting, monomeric solid. The other compounds are dimeric solids with the unsym-metrical acetylides occurring as cis and trans isomers. Polycrystalline gallium phosphide was deposited from these sources on silicon atlow pressure (0.05–0.1 Torr) and low temperature (350–600 °C) in a horizontal OMVPE reactor. The film growth was monitored by a residual gas analyzer and the by-products were trapped (N2(1)) to be later analyzed by 1H and 13C NMR. The deposited films were characterized by Raman spectroscopy, X-ray powder diffraction, and Auger emission spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hughes, R.C., Zipperian, T.E., Dawson, L.R., Biefeld, R.M., Walko, R.J., and Dvorack, M.A., J. Appl. Phys. 69 (9), 6500 (1991).Google Scholar
2. Olson, J.M., Kurtz, S.R., Kibbler, A.E., and Faine, P., Appl. Phys. Lett. 56 (7), 623 (1990).Google Scholar
3. Yamaguchi, T. and Niina, T., IEEE Trans., Elec. Dev. 28 (5), 588 (1981).Google Scholar
4. Handbook of Optics edited by Driscoll, W.G., and Vaughan, W. (McGraw-Hill, USA, 1978), (a) Chapter 7. (b) p. 430.Google Scholar
5. (a) Kawakubo, T. and Okada, M., J. Appl Phys. 67 (6), 3111 (1990).Google Scholar
(b) Reihlen, E.H., Jou, M.J., Jaw, D.H., and Stringfellow, G.B., J. Appl. Phys. 68 (2), 760 (1990).Google Scholar
6. Jones, R.A., Cowley, A.H., and Ekerdt, J.G. in Chemical Perspectives of Microelectronic Materials II, edited by Interrante, L.V., Jensen, K.F., Dubois, L.H., and Gross, M.E. (Mater. Res. Soc. Proc. 204, Boston, MA, 1991), p. 73.Google Scholar
7. (a) Cowley, A.H. and Jones, R.A., Angew. Chem. Int. Ed. Engl. 28, 1208 (1989).Google Scholar
(b) Higa, K.T. and Cramer, R.E., Submitted for publication.Google Scholar
8. Miller, J.E. and Ekerdt, J.G., Chem. Mater. 4, 7 (1992).Google Scholar
9. (a) Cowley, A.H., Harris, P.R., Jones, R.A., and Nunn, C.M., Organometallics 10, 652 (1991).Google Scholar
(b) Maury, F., Combes, M., Constant, G., Carles, R., and Renucci, J.B., J. De Phys. 43, C1347 (1982).Google Scholar
(c) Zaouk, A., Salvetat, E., Sakaya, J., Maury, F., and Constant, G., J. Crystal Growth 55, 135 (1981).Google Scholar
10. For synthesis of compounds see reference 7b and: (a) Lee, K.E., Higa, K.T., Nissan, R.A., and Butcher, R.J., Organometallics 11, 2816 (1992).Google Scholar
(b) Lee, K.E. and Higa, K.T., Organomet, J.. Chem., Accepted for publication.Google Scholar
11. (a) Suzuki, T., Mori, M., Jiang, Z.K., Soga, T., Jimbo, T., Umeno, M., Jpn. J. Appl. Phys. 31 (7), 2079 (1992).Google Scholar
(b) Landis, G.A., Loferski, J.J., Beaulieu, R., Sekula-Moisé, P.A., Vernon, S.M., Spitzer, M.B., and Keavney, C.J., IEEE Trans., Elec. Dev. 37 (2), 372 (1990).Google Scholar
(c) Leys, M.R., Pistol, M.-E., Titze, H., and Samuelson, L., J. Elec. Mat. 18 (1), 25 (1989).Google Scholar
12. (a) Monteil, Y., Berthet, M.P., Favre, R., Hariss, A., Bouix, J., Vaille, M., and Gibart, P., J. Cryst. Growth 77, 172 (1986).Google Scholar
(b) Hayashi, S., Solid State Commun. 56 (4), 375 (1985).Google Scholar
(c) Kvisle, S. and Rytter, E., Spectrochim. Acta 40A, 939 (1984).Google Scholar
13. (a) Wyckoff, R.W.G., Crystal Structures, 2nd ed. (Interscience, New York, 1963), pp. 108110.Google Scholar
(b) Smith, D.K., Nichols, M.C., Zolinsky, M.E., Powd 10, A Fortran TV Program for Calculating X-ray Powder Diffraction Patterns-Version 10, (Pennsylvania State University, University Park, PA, 1982), adapted by Scintag Inc., for use with Scintag software/graphics.Google Scholar
14. Koguchi, M., Kakibayashi, H., Yazawa, M., Hiruma, K., and Katsuyama, T., Jpn. J. Appl. Phys. 31 (7), 2061 (1992).Google Scholar