Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T09:08:22.384Z Has data issue: false hasContentIssue false

PWR Fuel Element Neutronic Analysis with Burnable Poison Rods Using Zircaloy and Hi-Nicalon Type S Claddings

Published online by Cambridge University Press:  07 March 2016

R. B. de Faria
Affiliation:
Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901 Belo Horizonte, Tel/Fax: 55-31-34096662, MG, Brasil Instituto Nacional de Ciências e Tecnologia de Reatores Nucleares Inovadores/CNPq, Brazil
J. G. Mantecón
Affiliation:
Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901 Belo Horizonte, Tel/Fax: 55-31-34096662, MG, Brasil
A. R. Hamers
Affiliation:
Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901 Belo Horizonte, Tel/Fax: 55-31-34096662, MG, Brasil
A. L. Costa
Affiliation:
Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901 Belo Horizonte, Tel/Fax: 55-31-34096662, MG, Brasil Instituto Nacional de Ciências e Tecnologia de Reatores Nucleares Inovadores/CNPq, Brazil
A. Fortini
Affiliation:
Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901 Belo Horizonte, Tel/Fax: 55-31-34096662, MG, Brasil Instituto Nacional de Ciências e Tecnologia de Reatores Nucleares Inovadores/CNPq, Brazil
C. Pereira
Affiliation:
Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901 Belo Horizonte, Tel/Fax: 55-31-34096662, MG, Brasil Instituto Nacional de Ciências e Tecnologia de Reatores Nucleares Inovadores/CNPq, Brazil
Get access

Abstract

The alloy composed of zirconium has been used effectively for over 50 years in claddings of nuclear fuel, especially for PWR type reactors. However, to increase fuel enrichment with the aim of rising the burning and maintaining the safety of nuclear plants, is of great relevance the study of new materials that can replace safely and efficiently zircaloy cladding. Among several proposed material, silicon carbide (SiC) has a potential to replace zircaloy as fuel cladding material due to its high-temperature tolerance, chemical stability and a low absorption cross-section for thermal neutrons. In this paper, the goal is to expand the study with silicon carbide cladding, checking its behavior when submitted to an environment with burnable poison variations, the impact on multiplication factor and reactivity coefficients to both claddings: zircaloy and silicon carbide. The neutronic analysis was made using the SCALE 6.0 (Standardized Computer Analysis for Licensing Evaluation) code. This code system is widely accepted and used worldwide for safety analysis, and criticality of nuclear reactors has been utilized to model a typical fuel element of a PWR.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hallstadius, L., Johnson, S. and Lahoda, E., Ed. Cladding for high performance fuel. Progress in Nuclear Energy 57, 7176 (2012).CrossRefGoogle Scholar
Dobisesky, J. P.. Reactor physics considerations for implementing silicon carbide cladding into a PWR environment. Massachusetts Institute of Technology, (2011).Google Scholar
Snead, L. L., et al. , Handbook of SiC properties for fuel performance modeling. Journal of Nuclear Materials 371 (2007) 329.CrossRefGoogle Scholar
Bloore, D. A.. Reactor physics assessment of thick silicon carbide clad PWR fuels. Massachusetts, (2005).Google Scholar
Bansal, N. P. (Ed.), Handbook of Ceramic Composites, X, 554 p., Hardcover (2005).Google Scholar
Bowman, S. M., KENO-VI Primer: A Primer for Criticality Calculations with SCALE/KENO-VI Using GeeWiz. Oak Ridge, Tennessee, USA: ORNL/TM-2008/069 (2008).CrossRefGoogle Scholar
Dehart, M. D.. TRITON: A Two-dimensional Transport and Depletion Module for Characterization of Spent Nuclear Fuel. Oak Ridge, Tennessee, USA : ORNL/TM-2005/39, Version 6, Vol. I, Sect. T1 (2009).Google Scholar
OECD, Organisation for Economic Co-Operation and Development. Burn-up Credit Criticality Benchmark - Phase II-D - PWR-UO2 Assembly Study of Control Rod Effects on Spent Fuel Composition, NEA N° 6227, ISBN: 92-64-02316-X, France, (2006).Google Scholar
de Faria, R. B., Torres, F., Monteiro, F. B. A., and Pereira, C.. Replacement zircaloy for silicon carbide as fuel cladding material in PWR – A neutronic evaluation. MRS Proceedings, volume 1769 (2015).CrossRefGoogle Scholar
Eletrobrás Termonuclear S.A. Eletronuclear. Final Safety Analysis Report Central Nuclear Almirante Álvaro Alberto. Rio de Janeiro, Brasil, UNIT2. REV.1 Status 08/99 (1999).Google Scholar
Bowman, S. M. and Dunn, M. E., SCALE Cross-section Libraries, Oak Ridge, Tennessee, USA: ORNL/TM-2005/39, Version 6, Vol. III, Sect. M4 (2009).Google Scholar
Rashed, A. H.. Properties and characteristics of silicon carbide. Poco Graphife, Inc. (2002)Google Scholar
Deck, C. P., Khalifa, H. E., Sammuli, B., Hilsabeck, T., Back, C. A.. Fabrication of SiC-SiC composites for fuel cladding in advanced reactor designs. Progress in Nuclear Energy 57, 3845 (2012).CrossRefGoogle Scholar
U. S. Nuclear Regulatory Commission, 2001, “RELAP5/MOD3.3 Beta Code Manual, Vol. IV – Models and Correlations”, Nuclear Safety Analysis Division, NUREG/CR-5535/Rev 1-Vol IV, Washington, DC, (2001).Google Scholar
Kubascheswski, O. and Alcock, C. B.. Metallurgical Thermochemistry. 5th Edition, Pergamon Press, New York (1979).Google Scholar
Duderstadt, J. J., Hamilton, J. L., Nuclear Reactor Analysis, John Wiley & Sons, Inc., New York (1976).Google Scholar