Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T16:32:05.499Z Has data issue: false hasContentIssue false

Pulsed-Field-Gradient NMR Studies of Hydrogen Diffusion in Laves-Phase Hydrides

Published online by Cambridge University Press:  10 February 2011

G. Majer*
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany, majer@vaxph.mpi-stuttgart.mpg.de
Get access

Abstract

The diffusivities D of hydrogen in cubic Laves-phase hydrides have been measured by means of pulsed-field-gradient nuclear magnetic resonance over wide temperature ranges. A review is given of the diffusion coefficients of hydrogen in ZrCr2Hx, rTi2Hx, ZrV2Hx, ZrMo2Hx. and HfV2Hx. with special emphasis on the variation of D with the hydrogen concentration x. The formation of ordered low-temperature phases in ZrV2Hx results in a substantial reduction of the hydrogen diffusivity. The dependence of D on the lattice parameter of the host compound is considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kehr, K. W. in Hydrogen in Metals I, edited by Alefeld, G. and Völkl, J. (Springer-Verlag, Berlin etc., 1978), p. 197226.Google Scholar
[2] Völkl, J. in Hydrogen in Metals I, edited by Alefeld, G. and Völkl, J (Springer-Verlag, Berlin etc., 1978), p. 321348.Google Scholar
[3] Messer, R., Blessing, A., Dais, S., Höpfel, D., Majer, G., Schmidt, C., Seeger, A., Zag, W. and Lässer, R., Z. Phys. Chem. NF, Suppl.-H2, 61 (1986).Google Scholar
[4] Richter, D., Hempelmann, R. and Bowman, R. C. in Hydrogen in Intermetallic Compounds II, edited by Schlapbach, L. (Springer-Verlag, Berlin etc., 1988), p. 97163.Google Scholar
[5] Wernick, J. H. in Intermetallic Compounds, edited by Westbrook, J. H. (Krieger, Huntington, N. Y., 1977), p. 197216.Google Scholar
[6] Didisheim, J.-J., Yvon, K., Fischer, P. and Shaltiel, D., J. Less-Common Met. 73, 335 (1980).Google Scholar
[7] Fruchart, D., Shoemaker, C. B. and Shoemaker, D. P., J. Less-Common Met. 73, 363 (1980).Google Scholar
[8] Somenkov, V. A. and Irodova, A. V., J. Less-Common Met. 101, 481 (1984)Google Scholar
[9] Elsässer, C., Schweizer, S. and Fähnle, M., MRS Symposium Proceedings 453, 221 (1997).Google Scholar
[10] Didisheim, J. -J., Yvon, K., Shaltiel, D., Fischer, P., Solid State Commun. 31, 47 (1979).Google Scholar
[11] Didisheim, J. -J., Yvon, K., Shaltiel, D., Fischer, P., Bujard, P. and Walker, E., Solid State Commun. 32, 1087 (1979).Google Scholar
[12] Bloembergen, N., Purcell, E. M. and Pound, R. M., Phys. Rev. 73, 679 (1948).Google Scholar
[13] Sholl, C. A., J. Phys. C: Solid State Phys. 21, 319 (1988).Google Scholar
[14] Herrmann, A., Schimmele, L., Majer, G. and Seeger, A., Defect and Diffusion Forum 143–147, 963 (1997).Google Scholar
[15] Cotts, R. M. in Hydrogen in Metals I, edited by Alefeld, G. and Völkl, J. (Springer-Verlag, Berlin etc., 1978), p. 227265.Google Scholar
[16] Barnes, R. G. in Hydrogen in Metals III, edited by Wipf, H. (Springer-Verlag, Berlin, Heidelberg, 1997), p. 93151.Google Scholar
[17] Renz, W., Majer, G., Skripov, A. V. and Seeger, A., J. Phys.: Condens. Matter 6, 6367 (1994). 119Google Scholar
[18] Renz, W., Majer, G. and Skripov, A. V., J. Alloys and Compounds 224, 127 (1995).Google Scholar
[19] Majer, G., Renz, W., Seeger, A., Barnes, R. G., Shinar, J. and Skripov, A. V., J. Alloys and Compounds 231, 220 (1995).Google Scholar
[20] Majer, G., Kaess, U., Stoll, M., Barnes, R. G. and Shinar, J., Defect and Diffusion Forum 143–147, 957 (1997).Google Scholar
[21] Majer, G., Renz, W., Seeger, A. and Barnes, R. G., Z. Phys. Chem. 181, 187 (1993).Google Scholar
[22] Stejskal, E. O. and Tanner, J. E., J. Chem. Phys. 42, 288 (1965).Google Scholar
[23] Tanner, J. E., J. Chem. Phys. 52, 2523 (1970).Google Scholar
[24] Bustard, L. D., Cotts, R. M. and Seymour, E. F. W. Phys. Rev. B 22, 12 (1980).Google Scholar
[25] Hampele, M., Messer, R. and Seeger, A., Z. Phys. Chem. NF 164, 879 (1989).Google Scholar
[26] Majer, G., Messer, R. and Seeger, A., Z. Phys. Chem. NF 164, 873 (1989).Google Scholar
[27] Hampele, M., Majer, G., Messer, R. and Seeger, A., J. Less-Common Metals 172, 631 (1991).Google Scholar
[28] Skripov, A. V. and Belyaev, M. Yu, J. Phys.: Condens. Matter 5, 4767 (1993).Google Scholar
[29] Miron, N. F., Shcherbak, V. I., Bykov, V. N. and Levdik, V. A., Sov. Phys. Crystallogr. 16, 266 (1971).Google Scholar
[30] Skripov, A. V., Rychkova, S. V., Belyaev, M. Yu. and Stepanov, A. P., Solid State Commun. 71, 1119 (1989).Google Scholar
[31] Faux, D. A., Ross, D. K. and Sholl, C. A., J. Phys. C: Solid State Phys. 19, 4115 (1986).Google Scholar
[32] Tahir-Kheli, R. A. and Elliott, R. J., Phys. Rev. B 27, 844 (1983).Google Scholar
[33] Shaltiel, D., Jacob, I. and Davidov, D., J. Less-Common Met. 53, 117 (1977).Google Scholar
[34] Westlake, D. G., J. Less-Common Met. 90, 251 (1983).Google Scholar
[35] Majer, G., Renz, W. and Barnes, R. G., J. Phys.: Condens. Matter 6, 2935 (1994).Google Scholar
[36] Kaess, U., Majer, G., Stoll, M., Peterson, D. T. and Barnes, R. G., J. Alloys and Compounds, 259, 74 (1997).Google Scholar
[37] Hempelmann, R., Richter, D., 0. Hartmann, Karlsson, E. and Wäppling, R., J. Chem. Phys. 90, 1935 (1989).Google Scholar
[38] C. Schönfeld, Schätzler, R. and Hempelmann, R., Ber. Bunsenges. Phys. Chem. 93, 1326 (1989).Google Scholar
[39] Didisheim, J. -J., Yvon, K., Fischer, P. and Tissot, P., Solid State Commun. 38, 637 (1981).Google Scholar
[40] Irodova, A. V., Borisov, I. I., Lavrova, O. A., Padurets, L. N., Pripadchev, S. A. and Laskova, G. V., Sov. Phys.-Solid State 25, 747 (1983).Google Scholar
[41] Korringa, J., Solid State Physics 2, 93 (1956).Google Scholar