Skip to main content Accessibility help
×
Home

Pulsed Laser Deposition of Highly Crystalline Gan Films on Sapphire

  • R. D. Vispute (a1), V. Talyansky (a1), S. Chupoon (a1), R. Enck (a1), T. Dahmas (a1), S. B. Ogale (a1), R. P. Sharma (a1), T. Venkatesan (a1), Y. X. Li (a2), L. G. Salamanca-Riba (a2), A. A. Iliadis (a3), M. He (a4), X. Tang (a4), J. B. Halpern (a4), M. G. Spencer (a4), M. A. Khan (a5), K. A. Jones (a6), V. Bel'kov (a7), V. Botnaryuk (a7), I. Diakonu (a7), L. Fedorov (a7) and Y. Zhilyaev (a7)...

Abstract

We report high quality epitaxial growth of GaN film by pulsed laser deposition technique. In this method, a KrF pulsed excimer laser was used for ablation of a polycrystalline, stoichiometric GaN target. The ablated material was deposited on a substrate kept at a distance of ∼ 7 cm from the target surface and in an NH3 background pressure of 10−5 Torr and temperature of 750°C. The films (∼0.5 μm thick) grown on AIN buffered sapphire showed a x-ray diffraction rocking curve FWHM of 4–6 arc minutes. The ion channeling minimum yield in the surface region was ∼3% indicating a high degree of crystallinity. The optical band gap was found to be 3.4 eV. The epitaxial films were shiny, and the surface RMS roughness was ∼ 5–15 nm. The electrical resistivity of these films was in the range of 10−2–102 Ω-cm with a mobility in excess of 60 cm2V-1s−1 and carrier concentration of 1017–1019cm−3.

Copyright

References

Hide All
[1] Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B., and Burns, M., J. Appl. Phys. 76, 1363 (1994), and references therein.
[2] “GaN and Related Materials for Device Applications”, Materials Research Society Bulletin, 22, 1997, and references therein.
[3] Molnar, R. J., Singh, R., and Moustakas, T. D., Appl. Phys. Lett. 66, 268 (1995).
[4] Nakamura, S., Harada, Y., and Seno, M., Appl. Phys. Lett. 58, 2021 (1991).
[5] Kung, P., Saxler, A., Zhang, X., Walker, D., Wang, T. C., Ferguson, I., and Razeghi, M., Appl. Phys. Lett. 66, 2958 (1995).
[6] Khan, M. A., Skogman, R. A., Van Hove, J. M., Olson, D. T., and Kuznia, J. N., Appl. Phys. Lett. 60, 1366 (1992).
[7] Karam, N. H., Parodos, T., Colter, P., McNulty, D., Rowland, W., Schetzina, J., EI-Masry, N., Bedair, S.M., Appl. Phys. Lett. 67, 94 (1995).
[8] Akasaki, I., Amano, H., Murakami, H., Sassa, M., Kato, H., and Manabe, K., J. Crystal Growth 128, 379 (1993).
[9] Qian, W., Skowronski, M., Graef, M. D., Doverspike, K., Rowland, L. B., and Gaskill, D. K., Appl. Phys. Lett. 66, 1252 (1995).
[10] Ishida, A., Yamamoto, E., Ishino, K., Ito, K., Fujiyasu, H., and Nakanishi, Y., Appl. Phys. Lett. 67, 665 (1995).
[11] Kim, W., Aktas, O., Botchkarev, A. E., Salvador, A., Mohammad, S. N., and Morkoc, H., J. Appl. Phys. Lett. 79, 7657 (1996).
[12] Powell, R. C., Lee, N.-E., Kim, Y.-W., and Greene, J. E., J. Appl. Phys. 73, 189 (1993).
[13] Yang, Z., Li, L. K., and Wang, W. I., Appl. Phys. Lett. 67, 1686 (1995).
[14] Paisley, M. J., and Devis, R. F., J. Crystal growth 162, 537 (1990).
[15] Vispute, R. D., Talyansky, V., Sharma, R. P., Choopun, S., Downes, M., and Venkatesan, T., Jones, K. A., Iliadis, A. A., and Khan, M. A., Appl. Phys. Lett. 71, 102 (1997).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed