Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-19T22:49:34.927Z Has data issue: false hasContentIssue false

Proton Conducting Nano Hybrid Membranes Synthesized from Temperature Tolerant Polydimethylsiloxane (PDMS) Polymers

Published online by Cambridge University Press:  01 February 2011

Je-Deok Kim
Affiliation:
Energy Electronics Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305–8568, Japan
Itaru Honma
Affiliation:
Energy Electronics Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305–8568, Japan
Get access

Abstract

Flexible and temperature tolerant nano-hybrid membranes consisting of zirconium (titanium) oxides and polydimethysiloxane (PDMS) with the different molecular mass of 4500 and 600 have been synthesized by sol-gel processes. The membrane of zirconium/PDMS=2 (in molar) showed enhanced thermal stability and flexibility up to 300 °C due to the presence of cross-linkable inorganic nano-phase in the hybrid macromolecular matrix. The membrane becomes proton conducting polymer electrolyte when doped with 12-phosphotungstic acid (PWA). The proton conducting properties of the hybrid membranes with various PWA concentration were measured in the temperature range from room temperature to 150°C under saturated humidity conditions. A maximum conductivity of 2×10-2 S/cm was obtained at 150°C when the PDMS/zirconium oxides hybrid matrix was changed to gel state due to the higher water activity at elevated temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Huang, H.-H., Orler, B., and Wilkes, G.L., Macromolecules 20, 1322 (1987).Google Scholar
2. Schmidt, H., J. Non-Crystalline Solids 73, 681 (1985).Google Scholar
3. Wang, B., Brennan, A.B., Huang, H., and Wilkes, G.L., J. Macromol. Sci.-Chem. A27(12), 1447 (1990).Google Scholar
4. Mackenzie, J.D., Chung, Y.J., and Hu, Y., J. Non-Crystalline Solids 147/148, 271 (1992).Google Scholar
5. Yamada, N., Yoshinaga, I., and Katayama, S., J. Appl. Phy. 85, 2423 (1999).Google Scholar
6. Katayama, S., Kubo, Y., and Yamada, N., J. Am. Ceram. Soc. 85[5], 1157 (2002).Google Scholar
7. Honma, I., Nakajima, H., Nishikawa, O., Sugimoto, T., and Nomura, S., J. Electrochem. Soc. 149, 1389 (2002).Google Scholar
8. Stangar, U.L., Groselj, N., Orel, B., and Colomban, P., Chem. Mater. 12, 3745 (2000).Google Scholar
9. Coronado, E. and Garcia, C.J. G.-, Chem. Rev. 98, 273 (1998).Google Scholar
10. Mioc, U., Davidovic, M., Tjapkin, N., Colomban, P., and Novak, A., Solid State Ionics 46, 103 (1991).Google Scholar
11. Jones, D.J. and Roziere, J., J. Mem. Sci. 185, 41 (2001).Google Scholar
12. Kerres, J., Ullrich, A., Meier, F., and Haring, T., Solid State Ionics 125, 243 (1999).Google Scholar
13. Kreuer, K.D., Fuchs, A., Ise, M., Spaeth, M., and Maier, J., Electrochim. Acta 43, 1281 (1998).Google Scholar
14. Kerres, J.A., J. Mem. Sci. 185, 3 (2001).Google Scholar
15. Yang, C., Costamagna, P., Srinivasan, S., Benziger, J., and Bocarsly, A.B., J. Power Soruces 103, 1 (2001).Google Scholar
16. Tchicaya-Bouckary, L., Jones, D.J., and Roziere, J., Fuel Cells 2, 40 (2002).Google Scholar
17. Park, Y.-I. and Nagai, M., Solid State Ionics 145, 149 (2001).Google Scholar
18. Nakajima, H., Nishikawa, O., Sugimoto, T., Nomura, S., and Honma, I., J. Electrochemical Society 149, 953 (2002).Google Scholar
19. Yamada, M. and Honma, I., Electrochim. Acta. 48, 2411 (2003).Google Scholar
20. Kim, J.D. and Honma, I., Electrochim. Acto. 48, 3633 (2003).Google Scholar
21. Yamada, N., Yoshinaga, I., and Katayama, S., J. Mater. Chem. 7(8), 1491 (1997).Google Scholar