Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-18T23:16:35.728Z Has data issue: false hasContentIssue false

Property Design of SrBi2Ta2O9 by Defect Engineering

Published online by Cambridge University Press:  01 February 2011

Yuji Noguchi
Affiliation:
Institute of Industrial Science, The University of Tokyo, 4–6–1 Komaba, Meguro-ku, Tokyo 153–8505, Japan PRESTO, Japan Science and Technology Agency, 4–1–8, Kawaguchi, Saitama, Japan
Masaru Miyayama
Affiliation:
Institute of Industrial Science, The University of Tokyo, 4–6–1 Komaba, Meguro-ku, Tokyo 153–8505, Japan
Get access

Abstract

Defect engineering is shown to be an effective to design for remanent polarization (Pr) and coercive field (Ec) in SrBi2Ta2O9 (SBT). Cation vacancies and oxygen vacancies are shown to play an essential role in the polarization properties. The ceramic samples were prepared by a solid-state reaction, and high-density ceramics (over 95% of the theoretical density) were used for the measurements of polarization and dielectric properties. High-resolution neutron powder diffraction revealed that trivalent-cation (Bi, rare-earth elements [RE=La, Ce, Pr, Nd, Sm]) substitution induces Sr vacancies in the perovskite blocks for the requirement of charge neutrality. The substitution of La with Sr vacancies (La0.33Sr0.5Bi2Ta2O9) increased 2Pr from 13 μC/cm2 (SBT) to 16 μC/cm2, and the 2Ec value (41 kV/cm) was much smaller than that of SBT (57 kV/cm). Nd-substituted SBT showed the same Pr of La-SBT, while 2Ec (140 kV/cm) of Nd-SBT (x=0.5) was much higher than that of La-SBT. The higher Ec found for Nd-SBT is attributed to partial Nd substitution at the Ta site with the creation of oxygen vacancies. The control of Ec for RE-SBT is discussed in terms of Sr vacancies and oxygen vacancies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 de Araujo, C. A-Paz, Cuchiaro, J. D., Mcmillan, L. D., Scott, M. C. and Scott, J. F., Nature 374 627 (1995).Google Scholar
2 Mihara, T., Yoshimori, H., Watanabe, H. and de Araujo, C. A-Paz, Jpn. J. Appl. Phys. 34, 5233 (1995).Google Scholar
3 Kato, K., Zheng, C., Finder, J. M., Dey, S. K. and Toriim, Y., J. Am. Ceram. Soc. 81, 1869 (1998).Google Scholar
4 Park, B. H., Kang, B. S., Bu, S. D., Noh, T. W., Lee, J. and Joe, W., Nature 401, 682 (1999).Google Scholar
5 Ishikawa, K. and Funakubo, H., Appl. Phys. Lett. 75, 1970 (1999).Google Scholar
6 Kim, S.-K., Miyayama, M. and Yanagida, H., Mater. Res. Bull. 31, 121 (1996).Google Scholar
7 Subbarao, E. C., J. Phys. Chem. Solids 23, (1962) 665.Google Scholar
8 Subbarao, E. C., J. Am. Ceram. Soc. 45, 166 (1962).Google Scholar
9 Armstrong, R. A. and Newnham, R. E., Mater. Res. Bull. 7, 1025 (1972).Google Scholar
10 Shimakawa, Y., Kudo, Y., Nakagawa, Y., Kamiyama, T., Asano, H. and Izumi, F., Phys. Rev. B 61, 6559 (2000).Google Scholar
11 Noguchi, Y., Shimizu, H., Miyayama, M., Oikawa, K. and Kamiyama, T., Jpn. J. Appl. Phys. 40, 5812 (2001).Google Scholar
12 Noguchi, Y., Satoh, R., Miyayama, M., and Kudo, T., J. Ceram. Soc. Jpn. 109, 29 (2001).Google Scholar
13 Desu, S. B., Joshi, P. C., Zhang, X., and Ryu, S. O., Appl. Phys. Lett. 71, 1041 (1997).Google Scholar
14 Kim, T.-Y. and Jang, H. M., Appl. Phys. Lett. 77, 3824 (2000).Google Scholar
15 Shimakawa, Y., Kudo, Y., Nakagawa, Y., Kamiyama, T., Asano, H. and Izumi, F., Appl. Phys. Lett. 74, 1904 (1999).Google Scholar
16 Noguchi, Y., Miyayama, M. and Kudo, T., Phys. Rev. B 63, 214102 (2001).Google Scholar
17 Noguchi, Y., Miyayama, M., Oikawa, K., Kamiyama, T., Osada, M., and Kakihana, M., Jpn. J. Appl. Phys. 41, 7062 (2002).Google Scholar
18 Atsuki, T., Soyama, N., Yonezawa, T., and Ogi, K., Jpn. J. Appl. Phys. 34, 5096 (1995).Google Scholar
19 Noguchi, T., Hase, T., and Miyasaka, Y., Jpn. J. Appl. Phys. 35, 4900 (1996).Google Scholar
20 Kamiyama, T., Oikawa, K., Tsuchiya, N., Osawa, M., Asano, H., Watanabe, N., Furusawa, M., Satoh, S., Fujikawa, I., Ishigaki, T., and Izumi, F., Physica B 213–214, 875 (1995).Google Scholar
21 Ohta, T., Izumi, F., Oikawa, K., and Kamiyama, T., Physica B, 234–236, 1093 (1997).Google Scholar
22 Noguchi, Y., Kitamura, A., Woo, L.-C., Miyayama, M., Oikawa, K., and Kamiyama, T., J Appl. Phys. 94, 6749 (2003).Google Scholar
23 Park, H.-B., Park, C. Y., Hong, Y.-S., Kim, K. and Kim, S.-J., J. Am. Ceram. Soc. 82, 94 (1999).Google Scholar