Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-02T03:42:34.894Z Has data issue: false hasContentIssue false

Properties of MOS Structure Fabricated on 3C-SiC Grown by Reactive Magnetron Sputtering.

Published online by Cambridge University Press:  21 February 2011

R. Turan
Affiliation:
Department of Physics, Linköping University, S-581 83 Linköping, Sweden
Q. Wahab
Affiliation:
Department of Physics, Linköping University, S-581 83 Linköping, Sweden
L. Hultman
Affiliation:
Department of Physics, Linköping University, S-581 83 Linköping, Sweden
M. Willander
Affiliation:
Department of Physics, Linköping University, S-581 83 Linköping, Sweden
J. -E. Sundgren
Affiliation:
Department of Physics, Linköping University, S-581 83 Linköping, Sweden
Get access

Abstract

We report the fabrication and the characterization of Metal Oxide Semiconductor (MOS) structure fabricated on thermally oxidized 3C-SiC grown by reactive magnetron sputtering. The structure and the composition of the SiO2 layer was studied by cross-sectional transmission electron microscopy (XTEM) Auger electron spectroscopy (AES). Homogeneous stoichiometric SiO2 layers formed with a well-defined interface to the faceted SiC(lll) top surface. Electrical properties of the MOS capacitor have been analyzed by employing the capacitance and conductance techniques. C-V curves shows the accumulation, depletion and deep depletion phases. The capacitance in the inversion regime is not saturated, as usually observed for wide-bandgap materials. The unintentional doping concentration determined from the 1/C2 curve was found to be as low as 2.8 × 1015 cm-3. The density of positive charges in the grown oxide and the interface states have been extracted by using high-frequency C-V and conductance techniques. The interface state density has been found to be in the order of 1011cm2-eV-1.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arbabm, A., Spetz, A., Wahab, Q., Willander, M. and Lundstrom, I., J. Sensors and Materials, 4, 174 (1993)Google Scholar
2. Sugii, T., Yamazaki, T. and Ito, T., IEEE Trans. Electron Devices, ED- 37, 2331 (1990).Google Scholar
3. Solangi, A. and Chaudry, M. I., in Amorphous and Crystalline Silicon Carbide. (Springer Proc. Physics. 71, Springer, Berlin, 1992).Google Scholar
4. Bhatnagar, M. and Baliga, B. J., IEEE Trans. Electron Devices, ED- 40, 645 (1993).Google Scholar
5. Nishino, S., Powell, J. A. and Will, H. A., Appl. Phys. Lett. 42, 460 (1983).Google Scholar
6. Nishino, S. and Saraié, J., in Amorphous and Crystalline Silicon Carbide. (Springer Proc. Physics. 34, Springer, Berlin, 1989), p. 186.Google Scholar
7. Motoyoma, S., Morikawa, N., Nasu, M. and Kaneda, S., J. Appl. Phys. 68, 101 (1990).Google Scholar
8. Wahab, Q., Hultman, L., Sundgren, J.-E and Willander, M., J. Mater. Sci. Eng. B, 11 61 (1992).Google Scholar
9. Wahab, Q., Glass, R. C., Ivanov, I. P., Birch, J., Sundgren, J.-E. and Willander, M., J. Appl. Phys., 74, 1663 (1993).Google Scholar
10. Tomasiunas, R., Petrauskas, M., Willander, M., Wahab, Q. and Sundgren, J.-E., Semicond, J.. Sci. Technol., 7, 1257 (1992).Google Scholar
11. Tomasiunas, R., Petrauskas, M., Willander, M., Wahab, Q. and Sundgren, J.-E., in Proceeding of 15th Nordic Semiconductor Meeting. Edited by Fransilla, S. and Paananen, R. (Finland, June 8–11, 1992), p. 35.Google Scholar
12. Karlsteen, M., Wahab, Q., Willander, M., Sundgren, J.-E. and Holmen, G., J. Diamond and Related Mater. 1, 486 (1992).Google Scholar
13. Karlsteen, M., Wahab, Q., Nur, O., Willander, M., and Sundgren, J. -E, Accepted in 3rd Int. SiC and related materials, 2–5 November, Washington DC. (1993).Google Scholar
14. Wahab, Q., Karlsteen, M., Willander, M. and Sundgren, J.-E., J. Electronic Materials, 11, 899 (1991).Google Scholar
15. Singh, N. and Rys, A., J. Appl. Phys., 73, 1279 (1993).Google Scholar
16. Tang, S. M., Berry, W. B., Kwor, R., Zeller, M. V. and Matus, L. G., J. Electrochem. Soc., 137, 221 (1990).Google Scholar
17. Zaima, S., Onoda, K., Koide, Y. and Yasuda, Y., J. Appl. Phys., 68, 6304 (1990).Google Scholar
18. Chaudry, M. I., J. Appl. Phys., 69, 7319 (1991).Google Scholar
19. Shibahara, K., Nishino, S. and Matsunami, H., Jpn. J. Appl. Phys., 23, L862 (1984).Google Scholar
20. Kee, R. W., Geib, K. M., Wilmsen, C. W. and Ferry, D. K., J. Vac. Sci. Technol., 15 1520 (1978).Google Scholar
21. Du, H., Libera, M., Yang, Z. and lai, Po-Jen, Jacobson, D. C., Wang, Y. C. and Davis, R. F.., Appl. Phys. Lett., 62, 423 (1993).Google Scholar
22. Nicollian, E. H. and Brews, J. R., MOS (Metal Oxide Semiconductor) Phvsics and Thechnology (Wiley. New York, 1982).Google Scholar
23. Heiman, F. P. and Warfield, , IEEE Trans. Electron Devices, ED- 12, 167 (1965).Google Scholar
24. Brews, J. R., Solid-State Electronics, 26, 711 (1983).Google Scholar