Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-12T00:00:11.383Z Has data issue: false hasContentIssue false

The Properties Of a-Si:H/c-Si Heterostructures Prepared By 55 kHz Pecvd For Solar Cell Application

Published online by Cambridge University Press:  10 February 2011

B. G Budaguan
Affiliation:
Moscow Institute of Electronic Technology, 103498 Moscow, RUSSIA, mictech@orgland.ru
A. A. Aivazov
Affiliation:
UniSil Corp. 401 National Av, Mountain View, CA, 94043 USA
A. A. Sherchenkov
Affiliation:
Moscow Institute of Electronic Technology, 103498 Moscow, RUSSIA, mictech@orgland.ru
A. V Blrjukov
Affiliation:
Moscow Institute of Electronic Technology, 103498 Moscow, RUSSIA, mictech@orgland.ru
V. D. Chernomordic
Affiliation:
Institute of Microelectronics, Russian Academy of Sciences, Yaroslavl', 150007 RUSSIA
J. W. Metselaar
Affiliation:
University of Technology, Mekelweg 4, 2628 CDDelft, NETHERLANDS
Get access

Abstract

In this work a-Si:H/c-Si heterostructures with good electronic properties of a-Si:H were prepared by 55 kHz Plasma Enhanced Chemical Vapor Deposition (PECVD). Currentvoltage and capacitance-voltage characteristics of a-Si:H/c-Si heterostructures were measuredto investigate the influence of low frequency plasma on the growing film and amorphous silicon/crystalline silicon boundary. It was established that the interface state density is low enough for device applications (<2.1010 cm−2). The current voltage measurements suggest that, when forward biased, space-charge-limited current determines the transport mechanism in a- Si:H/c-Si heterostructures, while reverse current is ascribed to the generation current in a-Si:H and c-Si depletion layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sala, D.della Grillo, P., Parisi, S., Francia, G.Di and Roca, F., Proc. 13th European Photov. Sol. Energy Conf., October 1995, Nice, p. 906.Google Scholar
2. Budaguan, B.G., Aivazov, A.A., Sazonov, A.Yu, Popov, A. A., and Berdnikov, A. E., in Amorphous and Microcrystalline Silicon Technology, edited by Schiff, E.A., Hack, M., Wagner, S., Schropp, R.E.I., and Shimizu, I. (Mater. es. Soc. Proc. 467, Pittsburgh, PA 1997), in press.Google Scholar
3. Budaguan, B.G., Aivazov, A.A, Radoselsky, A.G., and Popov, A.A. in Amorphous and Microcrystalline Silicon Technology, edited by Schiff, E.A., Hack, M., Wagner, S., Schropp, R.E.I., and Shimizu, I. (Mater. Res. Soc. Proc. 467, Pittsburgh, PA 1997), in press.Google Scholar
4. Sharma, D.K. and Narasimhan, K.L., Philos. Mag. B63, p. 543 (1991).Google Scholar
5. Budaguan, B.G., Aivazov, A.A., M.N., Meytin and Radosel'sky, A.G., this symposium.Google Scholar
6. Sasaki, G., Fujita, S. and Sasaki, A., J.Appl.Phys. 53, p1013.(1982).Google Scholar
7. Matsuura, H., Okuno, T., Okusi, H. and Tanaka, K., J. Appl. Phys. 55, p1012, (1984).Google Scholar
8. Mimura, H. and Hatanaka, Y., Appl.Surf.Sci 48/49, p. 472, (1991).Google Scholar
9. Schauer, F., Smid, V., Zmeskal, O. and Staurac, L., Phys. Stat. Sol. A73, p.K199, (1982).Google Scholar
10. Mackenzie, K.D., Comber, P.G. and Le, W.E.Spear, Philos. Mag. B46, p. 377 (1982).Google Scholar
11. Harris, A.T., Walker, R.S. and Sneddon, R., J.Appl.Phys. 51, p.4287, (1980).Google Scholar
12. Sze, S.M. Physics of Semiconductor Devices. Wiley-Interscience, New York, 1981, p. 98.Google Scholar