Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-19T14:40:21.708Z Has data issue: false hasContentIssue false

Properties And Prevention of Adhesions Applications of Bioelastic Materials

Published online by Cambridge University Press:  15 February 2011

D. W. Urry
Affiliation:
The University of Alabama at Birmingham, Laboratory of Molecular Biophysics, VH300, Birmingham, AL 35294–0019
D. Channe Gowda
Affiliation:
Bioelastics Research, Ltd., 1075 South 13th Street, Birmingham, AL 35205
Betty A. Cox
Affiliation:
Bioelastics Research, Ltd., 1075 South 13th Street, Birmingham, AL 35205
Lynne D. Hoban
Affiliation:
United States Department of the Navy, Naval Medical Research, Bethesda, MD 20889–5055.
Adam Mckee
Affiliation:
United States Department of the Navy, Naval Medical Research, Bethesda, MD 20889–5055.
Taffy Williams
Affiliation:
United States Department of the Navy, Naval Medical Research, Bethesda, MD 20889–5055.
Get access

Abstract

The origins, syntheses, variable composition and physical properties of bioelastic materials are discussed. The latter includes their capacity to undergo inverse temperature transitions to increased order on raising the temperature and to be designable to interconvert free energies involving the intensive variables of mechanical force, temperature, pressure, chemical potential, electrochemical potential and light.

Bioelastic materials include analogues and other chemical variations of the viscoelastic polypeptide, poly(Val-Pro-Gly-Val-Gly), and cross-linked elastomeric matrices thereof. This parent material has been shown to be remarkably biocompatible; it can be minimally modified to vary the rate of hydrolytic breakdown; it can contain enzymatically reactive sites; and it can have cell attachment sites included which promote excellent cell adhesion, spreading and growth to confluence.

One specific application is in the prevention of postoperative adhesion. There are some 30,000,000 per year surgical procedures in this country and a large portion of these would benefit if a suitable material were available for preventing adhesions. Bioelastic materials have been tested in a contaminated peritoneal model, and promising preliminary studies have been carried out in the rabbit eye model for strabismus surgery. In the peritoneal model, 90% of the 29 control animals exhibited significant adhesions; whereas, only 20% of the 29 animals using gas sterilized matrices had significant adhesions. On the basis of this data, it appears that cross-linked poly(VPGVG) is an effective physical barrier to adhesion formation in a trauma model with resulting hemorrhage and contamination.

The potential use of bioelastic materials as a pericardial substitute following the more than 400,000 open heart surgeries per year in the U.S. is under development beginning with the use of bioelastic matrices to prevent adhesions to the total artificial heart being used as a bridge to heart transplantation such that the site will be less compromised when receiving the donor heart.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sandberg, L. B., Leslie, J. G., Leach, C. T., Torres, V. L., Smith, A. R. and Smith, D. W., Pathol. Biol. 33, 266274 (1985).Google Scholar
2. Yeh, H., Ornstein-Goldstein, N., Indik, Z., Sheppard, P., Anderson, N., Rosenbloom, J. C., Cicila, G., Yoon, K. and Rosenbloom, J., Collagen and Related Res. 7, 235247 (1987).Google Scholar
3. Sandberg, L. B., Soskel, N. T. and Leslie, J. B., N. Engl. J. Med 304, 566579 (1981).Google Scholar
4. Urry, D. W., Long, M. M., Harris, R. D. and Prasad, K. U., Biopolymers 25, 19391953 (1986).Google Scholar
5. Urry, D. W., Harris, R. D., Long, M. M. and Prasad, K. U., Int. J. Pept. Protein Res. 28, 649660 (1986).Google Scholar
6. Urry, D. W., in Mol. Conformation and Biol. Interactions, edited by Balaram, P. and Ramaseshan, S. (Indian Acad. of Sci., Bangalore, India, 1991) pp. 555583.Google Scholar
7. Urry, D. W., Gowda, D. C., Parker, T. M., Luan, C-H., Reid, M. C., Harris, C. M., Pattanaik, A. and Harris, R. D., Biopolymers 32, 12431250 (1992).Google Scholar
8. Pattanaik, A., Gowda, D. C. and Urry, D. W., Biochem. Biophys. Res. Comm. 178, 539545 (1991).Google Scholar
9. Nicol, A., Gowda, D. C. and Urry, D. W., J. Biomed. Mater. Res. 26, 393413 (1992).Google Scholar
10. Urry, D. W., Gowda, D. C., Harris, C., Harris, R. D. and Cox, B. A., Polym. Preprints, Div. Polym. Chem., Am. Chem. Soc. 33 (2) 8485 (1992).Google Scholar
11. McPherson, D. T., Morrow, C., Minehan, D. S., Wu, J., Hunter, E. and Urry, D. W., Biotechnol. Prog. 8, 347352 (1992).Google Scholar
12. Urry, D. W. and Prasad, K. U., in Biocompatibility of Tissue Analogues, edited by Williams, D. F. (CRC Press, Inc., Boca Raton, Florida, 1985), pp. 89116.Google Scholar
13. Urry, D. W., Trapane, T. L., McMichens, R. B., lqbal, M., Harris, R. D. and Prasad, K. U., Biopolymers 25, S209–S228 (1986).Google Scholar
14. Urry, D. W., Trapane, T. L., Iqbal, M., Venkatachalam, C. M. and Prasad, K. U., Biochemistry 24, 51825189 (1985).Google Scholar
15. Urry, D. W., Prog. Biophys. molec. Biol. 57, 2357 (1992).Google Scholar
16. Urry, D. W., Angew. Chem. Int. Ed. Engl. (1993) (in press).Google Scholar
17. Urry, D. W., Parker, T. M., Reid, M. C. and Gowda, D. C., J. Bioactive Compatible Polym. 6, 263282 (1991).Google Scholar
18. Nicol, A., Gowda, D. C., Parker, T. M. and Urry, D. W. (1992) (submitted).Google Scholar
19. Ruoslahti, E., Pierschbacher, M. D., Science 238, 491497 (1987).Google Scholar
20. Nicol, A., Gowda, D. C., Parker, T. M. and Urry, D. W., in Biotechnol. Bioactive Polvm., edited by Gebelein, C. G. and Carraher, C. E. (Plenum Press, New York, 1993) (in press).Google Scholar
21. Ingber, D., Current Opinion in Cell Biology 3, 841848 (1991).Google Scholar
22. Lei, B. van der, Wildevuur, C. R. H., Nieuwenhuis, P., Blaauw, E. H., Dijk, F., Hulstaert, C. E. and Molenaar, I., Cell Tissue Res. 242, 569578 (1985).Google Scholar
23. Leung, D. Y. M., Glagov, S. and Mathews, M. B., Science 191, 475477 (1976).Google Scholar
24. Leung, D. Y. M., Glagov, S. and Mathews, M. B., Exp. Cell Res 109, 285298 (1977).Google Scholar
25. Hoban, L. D., Pierce, M., Quance, J., Hayward, I., McKee, A., Gowda, D. C., Urry, D. W. and Williams, T., J. Surgical Res (1993) (in press).Google Scholar
26. Davidson, M. M., Arch. Surg. 59, 300 (1979).Google Scholar
27. Replogle, R. L., Johnson, R. and Gross, R. E., Ann. Surg. 163, 580 (1966).Google Scholar
28. Home, H. W., Clyman, M., Debrovner, C., Griggs, G., Kistner, R., Kosasa, T., Stevenson, C. and Taymor, M., Int. J. Fertil. 18, 109 (1973).Google Scholar
29. diZerega, G. and Hodgen, G., Am. J. Obstet. Gynecol. 136, 173 (1980).Google Scholar
30. Koltai, J. L. and Gerhard, A., Prog. Ped. Surg. 25, 71 (1990).Google Scholar
31. Elkins, T. E., Bury, R. J., Ritter, J. L., Ling, F. W., Ahokas, R. A., Homsey, C. A. and Malinak, L. R., Fertility and Sterility. 41, 926 (1984).Google Scholar
32. Oelsner, G., Graebe, R. A., Pan, S-B., Haseltine, F. P., Barnea, E. R., Fakih, H., and DeCherney, A. H., J. Repro. Med. 32, 812 (1987).Google Scholar
33. James, D. C. O., Ellis, H. and Hugh, T. B., J. Pathol. Bact. 90, 279 (1965).Google Scholar
34. Weinans, M. J. N., Kauer, F. M., Klompmaker, I. J. and Weijma, J. Fertil. Steril. 53, 159160 (1990).Google Scholar
35. Soules, M. R., Dennis, L., Bosarge, A. and Moore, D. E., Amer. J. Obstet. Gynecol. 143, 829 (1982).Google Scholar
36. Jansen, R., Med. J. Australia 152, 305306 (1989).Google Scholar
37. Pfeffer, W. H., Fertil. Steril. 33, 245256 (1980).Google Scholar
38. Jansen, R. P. S., Am. J. Obstet. Gynecol. 153, 363371 (1985).Google Scholar
39. Jansen, R. P. S., Surg. Gynecol. Obstet. 166, 154160 (1988).Google Scholar
40. Gabbay, S., Trans. Am. Soc. Artif. Intern. Organs 36, 789791 (1990).Google Scholar
41. Laks, H., Hammond, G., Geha, A. S., J. Thorac. Cardiovasc. Surg. 82, 8892 (1981).Google Scholar
42. Mester, C. A., Comas, J. V., Ninot, S. et al., Thai. J. Surg 17, 125128 (1986).Google Scholar
43. Kohanna, F. H., Adams, P. X., Cunningham, J. N. Jr., and Spencer, F. C., J. Thorac. Cardiovasc. Surg. 74, 1419 (1977).Google Scholar
44. Yu-Chin, K., Chin. Med. J. 78, 210213 (1959).Google Scholar
45. Revuelta, J. M., Gracia-Rinaldi, P., Val., F., Crego, R. and Duran, C. M. G., J. Thorac. Cardiovasc. Surg. 89, 451455 (1985).Google Scholar
46. Minale, C., Hollweg, G., Nikol, S., Mittermayer, Ch. and Messmer, B. J., J. Thorac. Cardiovasc. Surg. 35, 312315 (1987).Google Scholar
47. Gallo, J. I., Pomar, J. L., Artinano, E., Val, F. and Duran, C. M. G., Ann. Thorac. Surg. 26, 149154 (1978).Google Scholar
48. Gallo, I., Artinano, E. and Duran, C. G., J. Thorac. Cardiovasc. Surg. 89, 709712 (1985).Google Scholar
49. Dietzman, R. H., Hotler, A. R., Lynch, M. F. et al., Contemp. Surg. 24, 3539 (1984).Google Scholar
50. Vakirevich, V. S., Abdulali, S. A., Abbott, C. R. and Ionescu, M. I., Tex. Heart Inst. 11, 238242 (1984).Google Scholar
51. Youmans, C. R., White, J. and Derrick, J. R., J. Thorac. Cardiovasc. Surg 55, 383388 (1968).Google Scholar
52. Mazuji, M. K. and Lett, J. C., Arch. Surg. 87, 104107 (1963).Google Scholar
53. Bonnabeau, R. C. Jr.,, Armanious, A. W. and Tarnay, T. J., J. Thorac. Cardiovasc. Surg. 66, 196201 (1973).Google Scholar
54. Soules, M. R., Dennis, L., Bosarge, A. and Moore, D. F., Am. J. Obstet. Gynecol. 143, 829834 (1982).Google Scholar
55. Linsky, C. B., Diamond, M. P., Cunningham, T., Constantine, B., DeCherney, A. H. and Zerega, G. S. di, J. Reproductive Medicine 32, 1720 (1987).Google Scholar
56. Cohen, S. M., Franklin, R. R., Haney, A. F., Molinak, L. R., Patton, G. W., Rock, J. A., Rosenberg, S. M., Webster, B. W. and Yuzpe, A. A., Fertil. Seril. 51, 933938 (1989).Google Scholar
57. Sekiba, K., Fukaya, T., Ono, T., Mizunuma, H., Osada, H., Mitsuhashi, N., Sugimura, K., Awaji, H., Sawada, T., Noda, Y., Miyazaki, K. and Saji, F., Obstet. Gynecol. 79, 518522 (1992).Google Scholar
58. Elsas, F. J., Gowda, D. C. and Urry, D. W., J. Ped. Ophtha. and Strab. 29, 284286 (1992).Google Scholar
59. Morales, A. G., Polack, F. M., Arata, A. F., Br. J. Ophthalmol. 50, 235244 (1966).Google Scholar
60. Sondhi., N., Ellis, F. D., Hamed, L. M., Helveston, E. M., Ophthalmic Surg. 18, 441443 (1987).Google Scholar
61. Dunlap, E. A., Trans. Am. Ophthalmol. Soc. 65, 393410 (1967).Google Scholar
62. Dunlap, E. A., Br. J. Ophthalmol. 58, 307312 (1974).Google Scholar
63. Cunningham, J. N., Spencer, F. C., Zeff, R., Williams, C. D., Cukingnan, R. and Mullin, M., J. Thorac. Cardiovasc. Surg. 70, 119125 (1975).Google Scholar
64. Gabbay, S., Guindy, A. M., Andrews, J. F., Amoto, J. J., Seaver, P. and Khan, M. Y., Ann. Thorac. Surg. 48, 803812 (1989).Google Scholar
65. Ungerleider, R. M., Mills, N. L. and Wechsler, A. S., Ann. Thorac. Surg. 40, 1115 (1985).Google Scholar
66. DePaulis, R., Riebman, J. B., Deleuze, P., Mohammed, F. S., Burns, G. L., Morea, M. and Olsen, D. B., J. Cardiovasc. Surg. 31, 202208 (1990).Google Scholar
67. Heydorn, W. H., Daniel, J. S. and Wade, C. E., J. Thorac. Cardiovasc. Surg. 94, 291296 (1987).Google Scholar