Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-24T10:03:46.147Z Has data issue: false hasContentIssue false

Production of Silicon Powder by Square-Wave Modulated Rf Silane Plasma

Published online by Cambridge University Press:  25 February 2011

J. Costa
Affiliation:
Departament de Física Aplicada i Electrònica, Universitat de Barcelona Av.Diagonal 647, E08028 Barcelona (Spain)
G. Sardin
Affiliation:
Departament de Física Aplicada i Electrònica, Universitat de Barcelona Av.Diagonal 647, E08028 Barcelona (Spain)
J. Campmany
Affiliation:
Departament de Física Aplicada i Electrònica, Universitat de Barcelona Av.Diagonal 647, E08028 Barcelona (Spain)
J.L. AndÚjar
Affiliation:
Departament de Física Aplicada i Electrònica, Universitat de Barcelona Av.Diagonal 647, E08028 Barcelona (Spain)
A. Canillas
Affiliation:
Departament de Física Aplicada i Electrònica, Universitat de Barcelona Av.Diagonal 647, E08028 Barcelona (Spain)
E. Bertran
Affiliation:
Departament de Física Aplicada i Electrònica, Universitat de Barcelona Av.Diagonal 647, E08028 Barcelona (Spain)
Get access

Abstract

Silicon powder has been produced by means of square-wave modulated rf silane plasma. The plasma conditions were: 30°C of reaction chamber temperature, 70 Pa of pressure, 80 W of rf power and 0. 1 Hz of square-wave modulation frequency. The gas flow rate was varied from 5 to 90 sccm.

The distribution and size of the powder grains were determined by transmission electron microscopy. The compositional and microstructural analysis of the powder was performed by FTIR spectroscopy. This analysis has revealed the dominant presence of SiH2 groups (2100 cm−1), in a highly polymeric form (850 and 890 cm−1), as well as the existence of an absorption band (1000-1100 cm−1) associated with oxidation of the powder.

These results have shown the great influence of the flow rate, through the gas residence time, on the composition and microstructure of silicon powder.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Watanabe, Y., Shiratani, M., and Makino, H., Appl. Phys. Lett. 57, 1616 (1990).Google Scholar
[2] Howling, A.A., Hollenstein, Ch., and Paris, P.J., Appl. Phys. Lett 59, 1409 (1991).Google Scholar
[3] Jellum, G.M., Daugherty, J.E., and Graves, D.B., J. Appl. Phys. 69, 6923 (1991).Google Scholar
[4] Boufendi, L., Plain, A., Blondeau, J.Ph., Bouchoule, A., Laure, C., and Toogood, M., Appl. Phys. Lett. 60, 169 (1992)Google Scholar
[5] Watanabe, Y., Shiratani, M., and Yamashita, M., Appl. Phis. Lett. 61, 1510 (1992).Google Scholar
[6] Anddjar, J.L., Bertran, E., Canillas, A., Campmany, J., Serra, J., and Roch, C., J. Appi. Phys. 71, 1546 (1992).Google Scholar
[7] Lloret, A., Bertran, E., Anddjar, J.L., Canillas, A., and Morenza, J.L., J. Appl. Phys. 69, 632 (1991).Google Scholar
[8] Verdeyen, J.T., Beberman, J., and Overzet, L., J. Vac. Sci Technol. 8, 1851 (1990).Google Scholar
[9] Overzet, L.J., Beberman, J.H., and Verdeyen, T.J., J. Appl. Phys. 66, 1622 (1989).Google Scholar
[10] Anddjar, J.L., Bertran, E., Canillas, A., Esteve, J., Andreu, J., Morenza, J.L., Vacuum 39, 795 (1989).Google Scholar
[11] Hadni, A., Essentials of Modem Physics Applied to the Study of the Infrared, Perg. Press (1967).Google Scholar
[12] Kniffler, N., Schroder, B., Geiger, J., J. Non-Cryst. Solids 58, 153 (1983).Google Scholar