Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T02:45:12.748Z Has data issue: false hasContentIssue false

Production of Fullerenes from Solar Energy

Published online by Cambridge University Press:  15 February 2011

D. Laplaze
Affiliation:
Groupe de Dynamique des Phases Condensées, Université de Montpellier II, F34095 Montpellier, France
P. Bernier
Affiliation:
Groupe de Dynamique des Phases Condensées, Université de Montpellier II, F34095 Montpellier, France
L. Barbedette
Affiliation:
Institut des Matériaux de Nantes, Université de Nantes, F44087 Nantes, France
G. Flamant
Affiliation:
Institut de Science et de Génie des Matériaux et Prodcédés, BP5 Odeillo, F66125 Font-Romeu, France
M. Lebrun
Affiliation:
Institut de Science et de Génie des Matériaux et Prodcédés, BP5 Odeillo, F66125 Font-Romeu, France
A. Brunelle
Affiliation:
Institut de Physique Nucléaire, Université de Paris Sud, F91406 Orsay, France
S. Della-Negra
Affiliation:
Institut de Physique Nucléaire, Université de Paris Sud, F91406 Orsay, France
Get access

Abstract

The high intensity of solar radiation, obtained with the Odeillo (France) solar furnace facilities, is used to vaporize graphite in inert gas atmosphere. The soot obtained contains C60, C70 and other heavier fullerenes. We discuss the possibility of increasing the evaporation rate of graphite and the yield of soot with this technique. From our last experiments, we obtain a first estimate of the soluble fullerene yield Y ( greater than 12%) and we have shown that 13C enriched fullerenes can be easily produced by this process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chibante, L.F.P., Tess, A., Alford, J., Dierner, M.D., Smalley, R.E., J. Phys.Chem. 97, 8696, 1993.Google Scholar
2. Fields, C.L., Parker, D.H., Pitts, J.R., Hale, M.J., Bingham, C., Lewandosky, A., King, D.E., J. Phys. Chem. 97, 8701, 1993 Google Scholar
3. Laplaze, D., Bernier, P., Barbedette, L., Lambert, J.M., Flamant, G., Lebrun, M., Brunelle, A., Della-Ngra, S., Acad, C.R. Sci. Paris, 318,(serie II), 7””, 1994 Google Scholar
4. Abrahamson, J., Davies, C., Stott, J., Ward, R., Wiles, P., Ind. Eng. Chem. Fundam., 19, 283, 1980 Google Scholar
5. Brunelle, A., Chaurand, P., Della-Negra, S., Beyec, Y. Le, Hakansson, P. Sundquist, B.U.R., Bernier, P., Coustel, N., Proceeding of the 40th ASMS Conference on Mass Spectrometry and allied topics, Washington DC, May 1992, p 1482 Google Scholar