Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-21T00:22:16.614Z Has data issue: false hasContentIssue false

Processing of Y1Ba2Cu3O7−x Superconducting Thin Films on GaAs Substrates with Double Buffer Layers

Published online by Cambridge University Press:  28 February 2011

Sang Yeol Lee
Affiliation:
Department of Electrical and Computer Engineering, New York State Institute on Superconductivity, State University of New York at Buffalo, Buffalo, NY 14260.
Quanxi Jia
Affiliation:
Department of Electrical and Computer Engineering, New York State Institute on Superconductivity, State University of New York at Buffalo, Buffalo, NY 14260.
Wayne A. Anderson
Affiliation:
Department of Electrical and Computer Engineering, New York State Institute on Superconductivity, State University of New York at Buffalo, Buffalo, NY 14260.
David T. Shaw
Affiliation:
Department of Electrical and Computer Engineering, New York State Institute on Superconductivity, State University of New York at Buffalo, Buffalo, NY 14260.
Get access

Abstract

High temperature superconducting Y1Ba2Cu3O7−x(YBCO) thin films have been grown on GaAs substrates by in situ laser deposition with a double buffer layer of yttrium-stabilized ZrO2(YSZ)/Si3N4. A barrier layer using a combination of YSZ/Si3N4 was used to grow high quality YBCO thin films without the degradation of the GaAs during YBCO film deposition. Strongly c-axis oriented superconducting YBCO thin films with a zero resistance temperature of 85.5 K and a critical current density of 1.9×103 A/cm2 at 77 K have been obtained. The electrical properties of the YBCO thin films were mainly dependent on YSZ buffer layer deposition condition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rao, M. R., Tarsa, E. J., Samoska, L. A., English, J. H., Gossard, A. C., Kroemer, H., Petroff, P. M., and Hu, E. L., Appl. Phys. Lett. 56, 1905(1990).Google Scholar
2. Kellett, B. J., Gauzzi, A., James, J. H., Dwir, B., Pavuna, D., and Reinhart, F. K., Appl. Phys. Lett. 57, 2588 (1990).Google Scholar
3. Molarius, J. M., Kolawa, E., Morishita, K., Nicolet, M. A., Tandon, J. L., Leavitt, J. A., and Mclntyre, L. C. Jr, J. Electrochem. Soc. 138, 834(1991).Google Scholar
4. Fork, D. K., Fenner, D. B., Barton, R. W., Phillips, J. M., Connel, G. A. N., Boyce, J. B., and Geballe, T. H., Appl. Phys. Lett. 57, 1161 (1990).Google Scholar
5. Tiwari, P., Kanetkar, S. M., Sharan, S., and Narayan, J., Appl. Phys. Lett. 57, 1578 (1990)Google Scholar
6. Sydor, M., Angelo, J., Mitchel, W., Haas, T. W., and Yen, M. Y., J. Appl. Phys. 66, 156 (1989)CrossRefGoogle Scholar
7. Pollak, F. H. and Shen, H., J. Electron. Mater. 19, 399 (1990)Google Scholar
8. Sydor, M., Angelo, J., Wilson, J. J., Mitchel, W. C., and Yen, M. Y., Phys. Rev. B40, 8473 (1989)Google Scholar