Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T16:33:23.262Z Has data issue: false hasContentIssue false

Processes Controlling Radionuclide Release from Spent Fuel

Published online by Cambridge University Press:  15 February 2011

A. Loida
Affiliation:
Kernforschungszentrum Karlsruhe, Institut für Nukleare Entsorgungstechnik, Postfach 3640, 76021 Karlsruhe, FRG
B. Grambow
Affiliation:
Kernforschungszentrum Karlsruhe, Institut für Nukleare Entsorgungstechnik, Postfach 3640, 76021 Karlsruhe, FRG
H. Geckeis
Affiliation:
Kernforschungszentrum Karlsruhe, Institut für Nukleare Entsorgungstechnik, Postfach 3640, 76021 Karlsruhe, FRG
P. Dressler
Affiliation:
Kernforschungszentrum Karlsruhe, Institut für Nukleare Entsorgungstechnik, Postfach 3640, 76021 Karlsruhe, FRG
Get access

Abstract

Dissolution of spent fuel has been studied in saline, anaerobe, carbonate free solutions. Processes controlling spent fuel dissolution and associated radionuclide release are radiolytically controlled oxidative dissolution, sorption on container, solubility and coprecipitation. Upper limits for oxidative dissolution rates are given by the production rates of oxidative radiolysis products. This limitation leads to a strong decrease in surface area normalized reaction rates with increasing surface to volume ratio (S/V) and imposes geometric constraints on prediction of spent fuel behavior in a repository. Solution concentrations of Am during spent fuel corrosion were about 5 orders of magnitude lower than the solubility of Am(OH)3(s) and are likely controlled by coprecipitation. Pu concentrations may be controlled by Pu(VI) or Pu(IV) (hydr)oxides.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Loida, A., Grambow, B., Dressier, P., Friese, K., Geckeis, H., [֦]Chemical Durability of High Burnup LWR-Spent Fuel in Concentrated Salt Solutions“, Mat. Res. Soc. Symp. Proa, Vol. 333, pp. 417424 (1994)Google Scholar
[2] Grambow, B.; Loida, A., Dressier, P., Geckeis, H., Diaz, P., Gago, J., Casas, I., De Pablo, J., [֦]Reaction of High-Burnup Spent Fuel and U02 in Salt Solutions” KfK 5377 (1994)Google Scholar
[3] Grambow, B., Müller, R., Mat. Res. Soc. Symp. Proc. Vol. 176 (1990)Google Scholar
[4] Shoesmith, D.W., Sunder, S., SKB Technical Report 91–63, (1991)Google Scholar
[5] Kim, J.I.; Mat. Res. Soc. Symp. Proc. Vol. 294 (1993) pp. 321 Google Scholar
[6] Garisto, N.C., Garisto, F., Nucl. Chem. Waste Management, Vol. 6 pp. 203211 (1986)Google Scholar
[7] Stumm, W. and Morgan, J.J., “Aquatic Chemistry”; John Wiley & Sons, New York (1981)Google Scholar
[8] Runde, W.; “Zum chemischen Verhalten von drei- und fünfwertigem Americium in salinen NaCl-LösungenDissertation, Technische Universität München, (1993)Google Scholar
[9] Lippmann, F., Jahrb, N.. Mineral. Abh. Vol. 130, pp. 243263 (1977)Google Scholar
[10] Capdevilla, H., Vitorge, P. and Giffaut, E., Radiochimica Acta 58/59, pp 4552 (1992)Google Scholar
[11] Pashalidis, I., and Kim, J.I.,; Institut für Radiochemie der Technischen Universität München, RCM 01092 (1992)Google Scholar
[12] Rai, D., Swanson, J.L., Nucl. Technology Vol. 54, pp. 107112 (1981)Google Scholar