Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T13:02:50.213Z Has data issue: false hasContentIssue false

Process Optimization and Integration of HFO2 and HF-Silicates

Published online by Cambridge University Press:  28 July 2011

Hideki Takeuchi
Affiliation:
Department of Electrical Engineering and Computer SciencesUniversity of California, Berkeley Berkeley, CA 94720-1770, U.S.A.
Tsu-Jae King
Affiliation:
Department of Electrical Engineering and Computer SciencesUniversity of California, Berkeley Berkeley, CA 94720-1770, U.S.A.
Get access

Abstract

We have established in-line characterization techniques for analyzing the bulk and interface-charge properties of dielectric films, for process optimization. Surface charge analysis (SCA) is used to determine the densities of interface states, fixed charge, and near-interface traps in ultra-thin dielectrics, and is useful for tracking the influence of post-deposition processing on interface-charge properties. Spectroscopic ellipsometry (SE) is used to obtain the absorption spectra in the conduction band-tail region. The intensity of an extra absorption peak inside the bandgap of HfO2 is clearly correlated with leakage current density and near-interface trap density. Based on the observed process dependencies, defects within the HfO2 films are likely to be oxygen vacancies. The relative scalability of HfO2 and Hf-silicate films of various compositions is examined using a figure of merit based on the direct-tunneling leakage current model. Pure HfO2 is expected to be more scalable than Hf-silicates. However, it is typically accompanied by an interfacial layer which significantly increases the equivalent oxide thickness (EOT). A 20% Hf silicate with relative permittivity of 11 or higher can be more scalable than HfO2 with an interfacial layer. Alternatively, an ultra-thin interfacial Si3N4 diffusion barrier can be used with HfO2, to allow for more aggressive EOT scaling. The dependencies of interface-charge properties and surface roughness on the nitride barrier formation process are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wakabayashi, H. et al. , IEDM Tech Dig., p.989 (2003).Google Scholar
[2] ITRS 2002, http://public.itrs.net/.Google Scholar
[3] Lee, S.J. et al. , IEDM Tech Dig., p.31 (2000).Google Scholar
[4] Kang, L., et al. , IEDM Tech Dig., p.35 (2000).Google Scholar
[5] Lee, B.H., et al. , IEDM Tech Dig., p.39 (2000).Google Scholar
[6] Chau, R., AVS Fifth Intnl. Conf. on Microelctronice and Interfaces, p.1 (2004).Google Scholar
[7] Quevedo-Lopez, M., et al. , Appl. Phys. Lett., 79, p.4192 (2001).Google Scholar
[8] Onishi, K., et al. , Symp. on VLSI Tech., p.22 (2002).Google Scholar
[9] Kim, H., et al. , Appl. Phys. Lett., 82, p.106 (2003).Google Scholar
[10] Quevedo-Lopez, M., et al. , Appl. Phys. Lett., 82, p.1609 (2002).Google Scholar
[11] Hobbs, C., et al. , Symp. on VLSI Tech., p.9 (2003).Google Scholar
[12] Kim, Y., et al. , Symp. on VLSI Tech., p.167 (2003).Google Scholar
[13] Kauerauf, T., et al. , IEDM Tech Dig., p.521 (2002).Google Scholar
[14] Cho, M., Appl. Phys. Lett., 81, p.334 (2002).Google Scholar
[15] Koyama, M., et al. , IEDM Tech Dig., p.849 (2002).Google Scholar
[16] Qi, W-J., et al. , Symp. on VLSI Tech., p.40 (2000).Google Scholar
[17] Zhu, W., et al. , IEDM Tech Dig., p.463 (2001).Google Scholar
[18] Takeuchi, H., et al. , J. Electrochem. Soc., 151, p.H44 (2004).Google Scholar
[19] SemiTest Inc., Application Note #102 (1997).Google Scholar
[20] SemiTest Inc., SCA-2500 User Manual (2000).Google Scholar
[21] Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).Google Scholar
[22] Onishi, K., et al. , Symp. VLSI Tech., p.22, (2002).Google Scholar
[23] Takeuchi, H., et al. , to appear in J. Vac. Sci. Tech. A (2004)Google Scholar
[24] Degraeve, R., et al. , IEDM Tech Dig., p.935 (2003).Google Scholar
[25] Shimiuzu, K., et al. , J. Appl. Phys.., 74, p. 375 (1993)Google Scholar
[26] Sawada, H., et al. , J. Appl. Phys.., 86, p. 956 (1999)Google Scholar
[27] Cho, Y. J., et al. , Appl. Phys. Lett., 82, p.1249 (2002)Google Scholar
[28] Robertson, J., J. Vac. Sci. Tech. B, 18, p.1785 (2000)Google Scholar
[29] Zhu, W., et al. , IEDM Tech Dig, p.463 (2001)Google Scholar
[30] Lucovsky, G., et al. , Appl. Phys. Lett., 79, p. 1775 (2001)Google Scholar
[31] Yu, P. Y., and Cardona, M., Fundamentals of Semiconductors: Physics and Material Properties, 2nd ed., (Springer, New York, 1996)Google Scholar
[32] Takeuchi, H., et al. , Appl. Phys. Lett., 83, p. 788 (2003)Google Scholar
[33] Lee, W.-C., et al. , IEEE Trans. Elect Dev. 48, p.1366 (2001)Google Scholar
[34] Yeo, Y.-C., et al. , IEEE Elect Dev. Lett., 21, p.540 (2000)Google Scholar
[35] Yeo, Y.-C., et al. , Appl. Phys. Lett., 81, p.2091 (2002)Google Scholar
[36] Krieger, G., et al. , J.Appl. Phys., 52, p..5710 (1982)Google Scholar
[37] Weinberg, Z. A., J. Appl. Phys., 53, p.5052 (1982)Google Scholar
[38] Kato, H., et al. , J. Appl. Phys., 92, p.1106 (2002)Google Scholar
[39] Callegari, A., et al. , J. Appl. Phys., 90, p.6466 (2001)Google Scholar
[40] Lucovsky, G., et al. , IEDM Tech Dig., p.617 (2002)Google Scholar
[41] Shanware, A., et al. , IEDM Tech Dig., p.137 (2001)Google Scholar
[42] Harada, Y., et al. , Symp. on VLSI Tech, p.26, (2002)Google Scholar
[43] Maria, J.-P., et al. , J. Mater. Res., 17, p.1571 (2002)Google Scholar
[44] Wilk, G. D., et al. , J. Appl. Phys., 87, p.484 (2000)Google Scholar
[45] Polishchuk, I., et al. , Dev. Res. Conf., p.105 (2002)Google Scholar
[46] Buchheit, K. M., et al. , MRS Fall meeting, E2.2 (2003)Google Scholar
[47] Lu, Q., et al. , IRPS, p.377 (2002).Google Scholar
[48] Hori, T., et al. , IEEE Trans on Elect. Dev., ED-34(11), p.2238 (1987)Google Scholar