Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-30T18:11:08.206Z Has data issue: false hasContentIssue false

Process Design for Non-Alloyed Contacts to InP-Based Laser Devices

Published online by Cambridge University Press:  25 February 2011

A. Katz
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
W. C. Dautremont-Smith
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. N. G. Chu
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
M. Geva
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
B. E. Weir
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
P. M. Thomas
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
L. C. Kimerling
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Pl/Ti and W thin films on n- and p- type InP and related materials have been investigated for potential use as a refractory ohmic contacts for conventional, single-side coplanar contacted and self-aligned barrier hetcrostructurc laser devices. Pt and Ti films were deposited sequentially by electron gun evaporation, while the W layer was rf sputtered, both onto p+ -In0.53Ga0.47As (Zn doped 5×l018cm−3) and n- InP (S doped, 5×l018cm−3). The deposition parameters of the two metal systems were optimized to produce adherent films with the lowest possible induced stress. Almost all the studied systems performed as ohmic contacts already as-deposited and were heat treated by means of rapid thermal processing in the temperature range of 300–900°C. The final contact processing conditions were tuned to provide the lowest possible contact resistance values accompanied by low mechanical stress and stable microstructure.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Katz, A., Weir, B. E., Chu, S. N. G., Thomas, P. M., Soler, M., Boone, T., Dautremont-Smith, W. C., J. Appl. Phys., To be published, Issue of April 1, (1990).Google Scholar
[2] Katz, A., Dautremont-Smith, W. C., Chu, S. N. G., Thomas, P. M., Loszi, L. A., Lee, J. W., Riggs, V. G., Brown, R. L., Napholtz, S. G. and Zilko, J. L., Appl. Phys. Lett. 54, 2306 (1989).CrossRefGoogle Scholar
[3] Chu, S. N. G., Katz, A., Boone, T., Thomas, P. M., Riggs, V. G., Dautremont-Smith, W. C., and Johnston, W. D. Jr., J. Appl. Phys., To be published, issue of April 15, (1990).Google Scholar
[4] Katz, A., Thomas, P. M., Chu, S. N. G., Dautremont-Smith, W. C., Sobers, R. G. and Napholtz, S. G., J. Appl. Phys. 67. 884 (1990).Google Scholar
[5] Katz, A., Dautremont-Smith, W. C., Thomas, P. M., Koszi, L. A., Lee, J. W., Riggs, V. G., Brown, R. L., Zilko, J. L., and Lahav, A., J. Appl. Phys. 65, 4319 (1989).Google Scholar
[6] Katz, A., Weir, B. E., Maher, D. M., Thomas, P. M., Soler, M., Dautremont-Smith, W. C., Karlicek, R. F. Jr., Wynn, J. D. and Kimerling, L. C., Appl. Phys. Lett. 55, 2220 (1989).Google Scholar
[7] Katz, A., Pcarton, S. J. and Geva, M., Submitted to Appl. Phys. Lett..Google Scholar
[8] Ishii, K., Ohshima, T., Fulatsugi, T., Fujii, T., Yokoyama, N., and Shibatomi, A., IEDM 86 proceedings, 274 (1986).Google Scholar
[9] Lahav, A. G., Wu, C. S. and Baiocchi, F. A., J. Vac. Sci. Technol. B, 6, 1785 (1988).CrossRefGoogle Scholar
[10] Yokoyama, N., Ohnishi, T., Onodera, H., Shinoki, T., Shibatomi, A., and Ishikawa, H., IEEE J. Solid-State Circuits 18, 520 (1983).Google Scholar
[11] Nakajima, K., in GalnAsP alloy semiconductors, edited by Pcarsall, T. P. (Wiley, New York, 1982), pp. 4360.Google Scholar
[12] Zilko, J. L., Flynn, E. J., Huo, D. C. T., Macrander, A. T. and Shen, T. M. (Private Communication).Google Scholar
[13] Long, J. A., Riggs, V. G. and Johnson, W. D. Jr., J. Cryst. Growth 69, 10 (1984).CrossRefGoogle Scholar
[14] Reeves, G. K. and Harrison, H. B., IEEE Electron Device Lett. 5, 111 (1982).CrossRefGoogle Scholar
[15] Katz, A., Chu, S. N. G., Dautremont-Smith, W. C., Soler, M., Weir, B. E. and Thomas, P. M., SPIE-89 Proceedings, To be published.Google Scholar
[16] Katz, A. and Dautremont-Smith, W. C., J. Appl. Phys., To be published, Issue of May 15, (1990).Google Scholar
[17] Cirillo, N. C. Jr., Chung, H. K., Void, P. J., Hibbs-Brenner, M. K. and Fraasch, A. M., J. Vac. Sci. Technol. B3, 1680 (1985).Google Scholar
[18] Ratajezyk, T. F. Jr. and Sinha, A. K., Thin Solid Films, 70, 241 (1980).CrossRefGoogle Scholar
[19] Itoh, T., Ion Beam Assisted Film Growth, (Elsevier Science Publisher, New York, 1989) pp. 121123.Google Scholar
[20] Vossen, J. L. and Kern, W., Thin Film Processes, (Academic Press, New York, 1978), p.59.Google Scholar
[21] Levi, R. A. and Gallagher, P. K., J. Elcctrochem. Soc. 132, 1986 (1985).Google Scholar