Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-02T01:53:27.315Z Has data issue: false hasContentIssue false

Preparation of Titanium Oxide and Metal Titanates as Powders, Thin Films, and Microspheres by Novel Inorganic Sol-Gel Process

Published online by Cambridge University Press:  01 February 2011

A. Deptuła
Affiliation:
adeptula@ichtj.waw.pl
Kenneth C Goretta
Affiliation:
ngoretta@yahoo.com, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL, 60439-4838, United States, 703 588 1785
Tadeusz Olczak
Affiliation:
tolczak@ichtj.waw.pl
Wieslawa Lada
Affiliation:
wlada@ichtj.waw.pl
Andrzej G. Chmielewski
Affiliation:
a.chmielewski@ichtj.waw.pl
U. Jakubaszek
Affiliation:
adeptula@ichtj.waw.pl
Bozena Sartowska
Affiliation:
b.sartowska@ichtj.waw.pl
Carlo Alvani
Affiliation:
alvani@casaccia.enea.it.
Sergio Casadio
Affiliation:
Casadio@Casaccia.enea.it.
Vittoria Contini
Affiliation:
vittoria.contini@casaccia.enea.it
Get access

Abstract

Titanium oxide and titanates based on Ba, Sr and Ca were prepared from commercial solutions of TiCl4 and HNO3. The main preparation steps for the sols consisted of elimination of chloride anions by distillation with nitric acid and addition of metal hydroxides for the titanates. Resulting sols were gelled and used to (1) prepare irregularly shaped powders by evaporation; (2) produce by a dipping technique thin films on glass, Ag, or Ti substrates; and (3) produce spherical powders (diameters <100 μm) by solvent extraction. Results of thermal and X-ray-diffraction analyses indicated that the temperatures required to form the various compounds were lower than those necessary to form the compounds by conventional solid-state reactions and comparable to those required with use of organometallic based sol-gel methods. Temperatures of formation could be further reduced by addition of ascorbic acid to the sols.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Deptuła, A., Olczak, T., Łada, W., Sartowska, B., Chmielewski, A. G., Alvani, C., Casadio, S., Bartolomeo, A. Di, Croce, F., and Goretta, K. C., in CIMTEC 2002, 10th International Ceramics Congress, Part A, edited by Vincenzini, P. (Techna Srl, Faenza, 2003) pp. 341352.Google Scholar
2. Deptuła, A., Olczak, T., Łada, W., Sartowska, B., Chmielewski, A.G. Alvani, C., Carconi, P.L., Bartolomeo, A. Di, Pierdominici, F., and Casadio, S., J. Sol-Gel Sci. Technol. 26,207 (2003).Google Scholar
3. Deptuła, A., Olczak, T., Łada, W., Chmielewski, A.G., Alvani, C., Carconi, P.L., Bartolomeo, A. Di, Perdominici, F., and Casadio, S., J. Mater. Sci. 37, 1 (2002).Google Scholar
4. Renoult, O., Boilot, J-P., Korb, J.-P., and Boncoeur, M., J. Nucl. Mater. 223, 126 (1995).Google Scholar
5. Wen, Z., Gu, Z., Huang, S., Yang, J., Lin, Z., and Yamamoto, O., J. Power Sourc. 146, 670 (2005).Google Scholar
6. Kavan, L. and Grätzel, M., Solid State Lett. 5, A39 (2002).Google Scholar
7. Moshopoulou, E. G., J. Am. Ceram. Soc. 82, 3317 (1999).Google Scholar
8. Bohnke, C., Duroy, H., and Fourquet, J. L., Sens. Actua. B 89, 240 (2003).Google Scholar
9. Vijayakumar, M., Pham, Q. Nghi, and Bohnke, C., J. Euro. Ceram. Soc. 25, 2973 (2005).Google Scholar
10. Kosewa, I., Chaminade, J. P., Gravereau, P., Pechev, S., Pechev, P., and Etoumeau, J., J. Alloys Comp. 389, 47 (2005).Google Scholar
11. Berbenni, V. and Marini, A., J. Mater. Sci. 39, 5279 (2004).Google Scholar
12. Okayama, J., Takaya, I., Nashimoto, K., and Sugahara, Y., J. Am. Ceram. Soc. 85, 2195 (2002).Google Scholar
13. Shendo, R. V., Krueger, D. S., Rossetti, G. A. Jr, and Lombardo, S. J., J. Am. Ceram. Soc. 84, 1648 (2001).Google Scholar
14. Janes, R. and Knightley, L. J., J. Mater. Sci. 39, 2589 (2004).Google Scholar
15. Yang, J., Li, D., Wang, X., and Lu, L., J. Mater. Sci. 38, 2907 (2003).Google Scholar
16. Mazdyiasni, K. S., Dolloff, R. T., and Smith, J., J. Am. Ceram. Soc. 52, 523 (1969).Google Scholar
17. Phule, P. P. and Risbud, S. H., Adv. Ceram. Mater. 3, 183 (1988).Google Scholar
18. Chaput, F., Boilot, J. P., and Beauger, A., J. Am. Ceram. Soc. 73, 942 (1990).Google Scholar
19. Phule, P. P. and Risbud, S. H., J. Mater. Sci. 25, 1169 (1990).Google Scholar
20. Hu, M. Z. C., Miller, G. A., Payzant, E. A., and Rawn, C. J., J. Mater. Sci. 35, 2927 (2000).Google Scholar
21. Cheung, M. C., Chan, H. L. W., and Choy, C. L., J. Mater. Sci. 36, 381 (2001).Google Scholar
22. Beck, H. P., Eisner, W., and Haberkorn, R., J. Euro. Ceram. Soc. 21, 2319 (2001).Google Scholar
23. Kumar, S., Messing, G. L., and White, W. B., J. Am. Ceram. Soc. 76, 617 (1993).Google Scholar
24. Takeuchi, T., Tabuchi, M., Ado, K., Honjo, K., Nakamura, O., Kageyama, H., Suyama, Y. Ohtori, N., and Nagasawa, M., J. Mater. Sci. 32, 4053 (1997).Google Scholar
25. Deptuła, A., Łada, W., Olczak, T., Lanagan, M. T., Dorris, S. E., Goretta, K. C., and Poeppel, R. B., Polish Patent No. 172618 (1997).Google Scholar
26. Deptuła, A., Rebandel, J., Drozda, W., Łada, W., and Olczak, T., Mater. Res. Soc. Symp.Proc. 270, 277 (1992).Google Scholar
27. Deptuła, A., Łada, W., Olczak, T., LeGeros, R. Z., and LeGeros, J. P., Bioceram. 9, 313 (1996).Google Scholar
28. Łada, W., Deptuła, A., Sartowska, B., Olczak, T., Chmielewski, A. G., Carewska, M., Scaccia, S., Simonetti, E., Giorgi, L., and Moreno, A., J. New Mater. Electrochem. Sys. 6, 33 (2003).Google Scholar
29. Chatterjee, M., Naskar, M. K., and Ganguli, D., J. Sol-Gel Sci. Technol. 16, 143 (1999).Google Scholar
30. Ueyama, R., Harada, M., Ueyama, T., Yamamoto, T., Shiosaki, T., Seo, W. S., Kuribayashi, K., and Koumoto, K., J. Mater. Sci.: Mater. Electron. 11, 139 (2000).Google Scholar
31. Holland, T. J. B. and Redfern, S. A. T., Mineral. Mag. 61, 65 (1997).Google Scholar