Skip to main content Accessibility help

Preparation of spherical, ordered colloidal aggregates using inkjet printing

  • Enrico Sowade (a1), Thomas Blaudeck (a1) (a2) and Reinhard R. Baumann (a1) (a3)


In this paper we report about combining inkjet printing technology and self-assembly as a scalable manufacturing tool for spherical, well-ordered aggregates. The aggregates consist of a high number of ordered colloidal nanospheres arranged as ball-shaped structures. Applying inkjet printing based on the principle of droplet ejection the spherical aggregates can be deposited on various surfaces in dry environment and under ambient conditions. The aggregation of the nanospheres is independent of the surface energy of the substrate leading to the assumption that the main part of the assembly and aggregation process takes place in-flight [1].

By applying inkjet printing with an adapted control signal, small droplets of a water-based ink formulation containing monodisperse polystyrene nanoparticles are ejected out of the inkjet nozzles. The ejected droplets serve as a confined geometry for the nanospheres in the carrier liquid during evaporation. As a result, the particles form stable ball-shaped aggregates with hexagonal order. Due to the in-flight self-assembly of the nanospheres, our approach is suitable for any solid surface in dry environment and allows the deposition of the ball-shaped aggregates in appropriate patterns.



Hide All
1. Sowade, E., Hammerschmidt, J., Blaudeck, T., and Baumann, R. R., “In-Flight Inkjet Self- Assembly of Spherical Nanoparticle Aggregates,” Advanced Engineering Materials, vol. 14, no. 1-2, pp. 98–100, 2012.
2. Kim, H. et al. ., “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nature Photonics, vol. 3, no. 9, pp. 534–540, 2009.
3. Sato, O., Kubo, S., and Gu, Z.-Z., “Structural Color Films with Lotus Effects,” Accounts of Chemical Research, vol. 42, no. 1, 2009.
4. Kol, N., Adler-Abramovich, L., Barlam, D., Shneck, R. Z., Gazit, E., and Rousso, I., “Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures,” Nano letters, vol. 5, no. 7, pp. 13436, 2005.
5. Sun, T., Feng, L., Gao, X., and Jiang, L., “Bioinspired surfaces with special wettability,” Accounts of chemical research, vol. 38, no. 8, pp. 64452, 2005.
6. Wang, J., Zhang, Y., Wang, S., Song, Y., and Jiang, L. E. I., “Bioinspired Colloidal Photonic Crystals with Controllable Wettability,” Accounts of Chemical Research, vol. 44, no. 6, pp. 405–415, 2011.
7. Velev, O. D. and Gupta, S., “Materials Fabricated by Micro- and Nanoparticle Assembly - The Challenging Path from Science to Engineering,” Advanced Materials, vol. 21, no. 19, pp. 1897–1905, 2009.
8. Ozin, G. A. et al. ., “Nanofabrication by self-assembly,” Materials Today, vol. 12, no. 5, pp. 12–23, 2009.
9. Velev, O., Lenhoff, A., and Kaler, E., “A class of microstructured particles through colloidal crystallization,” Science, vol. 287, no. 5461, pp. 22403, Mar. 2000.
10. Gokmen, M. T. and Du Prez, F. E., “Porous polymer particles - A comprehensive guide to synthesis, characterization, functionalization and applications,” Progress in Polymer Science, vol. 37, no. 3, pp. 365–405, 2012.
11. Rastogi, V., Melle, S., Calderón, O. G., García, A. a., Marquez, M., and Velev, O. D., “Synthesis of Light-Diffracting Assemblies from Microspheres and Nanoparticles in Droplets on a Superhydrophobic Surface,” Advanced Materials, vol. 20, no. 22, pp. 4263–4268, 2008.
12. Ko, H.-Y., Park, J., Shin, H., and Moon, J., “Rapid Self-Assembly of Monodisperse Colloidal Spheres in an Ink-Jet Printed Droplet,” Chemistry of Materials, vol. 16, no. 22, pp. 4212–4215, 2004.
13. Kuncicky, D. M. and Velev, O. D., “Surface-guided templating of particle assemblies inside drying sessile droplets,” Langmuir, vol. 24, no. 4, pp. 1371–80, 2008.
14. Grzelczak, M., Vermant, J., Furst, E. M., and Liz-marza, L. M., “Directed Self-Assembly of Nanoparticles,” ACS nano, vol. 4, no. 7, pp. 3591–3605, 2010.
15. Cho, Y.-S., Kim, S.-H., Yi, G.-R., and Yang, S.-M., “Self-organization of colloidal nanospheres inside emulsion droplets: Higher-order clusters, supraparticles, and supraballs,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 345, no. 1-3, pp. 237–245, 2009.
16. Kim, S.-H., Lee, S. Y., Yi, G.-R., Pine, D. J., and Yang, S.-M., “Microwave-assisted self-organization of colloidal particles in confining aqueous droplets,” Journal of the American Chemical Society, vol. 128, no. 33, pp. 10897904, 2006.
17. Yi, G.-R., Manoharan, V. N., Klein, S., Brzezinska, K. R., Pine, D. J., and Lange, F. F., “Monodisperse Micrometer-Scale Spherical Assemblies of Polymer Particles,” Advanced Materials, no. 16, pp. 1137–1140, 2002.
18. Cho, Y.-S., Yi, G.-R., Kim, S.-H., Pine, D. J., and Yang, S.-M., “Colloidal Clusters of Microspheres from Water-in-Oil Emulsions,” Chemistry of Materials, vol. 17, no. 20, pp. 5006–5013, 2005.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed