Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-05T16:51:00.023Z Has data issue: false hasContentIssue false

Preparation of Pb(Zr0.54Ti0.46)O3 Thin Films on (100)Si Using Textured YBa2Cu3O7−δ and Yttria-Stabilized Zirconia Buffer Layers by Laser Physical Vapor Deposition Technique

Published online by Cambridge University Press:  01 January 1992

P. Tiwari
Affiliation:
Department of Materials Science and Engineering North Carolina State University, Raleigh, NC 27695–7916
T. Zheleva
Affiliation:
Department of Materials Science and Engineering North Carolina State University, Raleigh, NC 27695–7916
A. Morimoto
Affiliation:
Department of Materials Science and Engineering North Carolina State University, Raleigh, NC 27695–7916
V.N. Shukla*
Affiliation:
Department of Materials Science and Engineering North Carolina State University, Raleigh, NC 27695–7916
J. Narayan
Affiliation:
Department of Materials Science and Engineering North Carolina State University, Raleigh, NC 27695–7916
*
*Texas Instrument Inc., Attleboro, MA 02703
Get access

Abstract

We have fabricated high-quality <001> textured Pb(Zr0.54Ti0.46)O3 (PZT) thin films on (001)Si with interposing <001> textured YBa2Cu3O7−δ (YBCO) and yttria-stabilized zirconia (YSZ) buffer layers using pulsed laser deposition (KrF excimer laser, λ=248 nm, τ=20 nanoseconds). The YBCO layer provides a seed for PZT growth and can also act as an electrode for the PZT films, whereas YSZ provides a diffusion barrier as well as a seed for the growth of YBCO films on (001)Si. These heterostructures were characterized using X-ray diffraction, high-resolution transmission electron microscopy and Rutherford backscattering techniques. The YSZ films were deposited in oxygen ambient (∼9X10−4 torr) at 775°C on (001)Si substrate having <001>YSZ// <001>Si texture. The YBCO thin films were deposited in-situ in oxygen ambient (200 mtorr) at 650°C. Temperature and oxygen ambient for the PZT deposition were optimized to be 530°C and 0.4–0.6 torr, respectively. The laser fluence to deposit this multistructure was 2.5–5.0 J/cm2. The <001> textured perovskite PZT films showed a dielectric constant of 800–1000, a saturation polarization of 37.81 μC/cm2, remnant polarization of 24.38 μC/cm2 and a coersive field of 125 kV/cm. The effects of processing parameters on microstructure and ferroelectric properties of PZT films and device implications of these structures are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Proceedings of Materials Society Spring Meeting, Symposium on Ferroelectric Thin Films, edited by Myers, E.R. and Kingan, A. (Materials Research Society, Pittsburgh, PA, 1990).Google Scholar
2. Scott, J.F., Kammerdimer, L., Paris, M., Trayner, S., Ottenbacher, V., Shawabken, A. and Oliver, W.F., J. Appl. Phys., 64, 787 (1988).Google Scholar
3. Okuyama, M., Matsui, Y., Nakamo, H. and Hamakawa, Y., Ferroelectrics 33, 235 (1981).Google Scholar
4. Takayama, R., Tomita, Y., lijima, K. and Veda, I., J. Appl. Phys., 61, 411 (1987).Google Scholar
5. Kawaguchi, T., Adachi, H., Setsune, K. and Wasa, K., Appl. Opt., 23, 2187 (1984).Google Scholar
6. Ishida, M., Matsuhami, H. and Tanaka, T., Appl. Phys. Lett., 31, 433 (1977).Google Scholar
7. Adachi, H., Mitsuya, Y., Yamazaki, O. and Wasa, K., J. Appl. Phys., 30, 736 (1986).Google Scholar
8. Okada, A., J. Appl. Phys., 49, 4494 (1978).Google Scholar
9. Krupanidhi, S.B., Maffei, N., Sayer, M. and El-Assal, K., J. Appl. Phys. 54, 6601 (1983).Google Scholar
10. Oikawa, M. and Toda, K., Appl. Phys. Lett., 29, 491 (1976).Google Scholar
11. Nakagawa, T., Yamaguchi, J., Okuyama, M. and Hamakawa, Y., Japan. J. Appl. Phys., 21, L655 (1982).Google Scholar
12. Kwak, B.S., Boyd, E.P. and Erbil, A., Appl. Phys. Lett., 53, 1702 (1988).Google Scholar
13. Vest, R.W. and Xu, J., Ferroelectrics, 93, 21 (1988).Google Scholar
14. Otsubo, S., Maeda, T., Minamikawa, T., Yonezawa, Y., Morimoto, A. and Shimizu, T., Japan. J. Appl. Phys., 29, L133 (1990).Google Scholar
15. Abe, Kazuhide, Tomita, Hiroshi, Toyoda, Hiroshi, lmai, Motomasa and Yokote, Yukari, Japan. J. Appl. Phys., 30, 2152 (1991).Google Scholar
16. Kidoh, H., Ogawa, T., Morimoto, A. and Shimizu, T., Appl. Phys. Lett., 58, 2910 (1991).Google Scholar
17. Ramesh, R., Inam, A., Chan, W.K., Tillerot, F., Wilkens, B., Chang, C.C., Sands, T., Tarascon, J.M. and Kermidas, V.G., Appl. Phys. Lett., 59, 3542 (1991).Google Scholar
18. Tiwari, P., Kanetkar, S.M., Sharan, S., and Narayan, J., Appl. Phys. Lett., 57, 1578 (1990).Google Scholar
19. Fork, D.K., Fenner, D.B., Barton, R.W., Phillips, J.M., Connell, G.A.N., Boyce, J.B., and Geballe, T.H., Appl. Phys. Lett., 57, 1161 (1990).Google Scholar
20. Singh, R.K., Narayan, J., Singh, A.K., and Lee, C.B., J. Appl. Phys., 67, 3448 (1990).Google Scholar
21. Singh, R.K., Ganapathi, L., Tiwari, P., and Narayan, J., Appl. Phys. Lett., 55, 2351 (1989).Google Scholar