Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T14:55:34.876Z Has data issue: false hasContentIssue false

The Preparation of Kinetically Stable Crystalline Compounds from Modulated Elemental Reactants

Published online by Cambridge University Press:  15 February 2011

Marc D. Hornbostel
Affiliation:
Materials Science Institute & Department of Chemistry, University of Oregon, Eugene, Oregon 97403
Myungkeun Noh
Affiliation:
Materials Science Institute & Department of Chemistry, University of Oregon, Eugene, Oregon 97403
Christopher D. Johnson
Affiliation:
Materials Science Institute & Department of Chemistry, University of Oregon, Eugene, Oregon 97403
Get access

Abstract

Diffusion distances within elementally modulated reactants can be controlled on an Angstrom length scale. Below a critical repeat thickness, elementally modulated reactants interdiffuse without nucleating crystalline compounds. Using this amorphous intermediate, we can prepare metastable compounds by controlling nucleation: Above this critical repeat thickness, crystalline compounds nucleate at the reacting interfaces. Using the architecture of the initial reactant to control the diffusion distances in the initial reactant, we have found that we can prepare crystalline superlattices. Crystalline superlattice compounds containing integral numbers of inter grown transition metal dichalcogenide layers and alternating layers of transition metal carbides have been prepared through controlled crystallization of superlattice reactants with designed compositional modulation. High quality c-axis oriented dichalcogenide crystalline superlattices result from extended annealing at relatively low temperatures. A large number of [00l] diffraction orders and off-axis [10l] diffraction peaks are observed indicating that these compounds are crystalline in three dimensions. Similar annealing conditions were used to prepare carbide superlattices, however the limited low temperature diffusion rates of the carbides limit the crystallite size to approximately 300Å. The rational synthesis of these intergrowth compounds from superlattice reactants permits the exploratory synthesis of a new class of compounds and the tailoring of physical properties as a function of compositional layer thicknesses and native properties of the parent compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stein, A., Keller, S. W., and Mallouk, T. E., Science 259, 15581564 (1993).Google Scholar
2. Marchand, R., Brohan, L., and Tournoux, M., Mat. Res. Bull. 15, 11291133 (1980).Google Scholar
3. Weigers, G. A., Meelsma, A., Haange, R. J. et al. , Mater. Res. Bull. 23, 1551 (1988).Google Scholar
4. Auriel, C., Meerschaut, A., Roesky, R. et al. , Eur. J. Solid State Inorg. Chem. 29, 1079 (1992).Google Scholar
5. Ploog, K., Angewandte Chemie 27 (5), 593621 (1988).Google Scholar
6. Fister, L., Li, X. M., Novet, Thomas et al. , J. Vac. Sci. & Technol. A 11, 30143019 (1993).Google Scholar
7. Novet, T., McConnell, John M., and Johnson, D. C., Materials Research Society 238, 581586 (1992).Google Scholar
8. Cotts, E.J., Meng, W.J., and Johnson, W.L., Phys. Rev. Lett. 57 (18), 22952298 (1986).Google Scholar
9. Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51 (5), 415418 (1983).Google Scholar
10. Schwarz, R. B., Wong, K. L., and Johnson, W. L., Journal of the Non-Crystalline Solids 61 & 62, 129134(1984).Google Scholar
11. Clemens, B. M. and Buchholz, J. C., Mat. Res. Soc. Symp. Proc. 37, 559564 (1985).Google Scholar
12. Clemens, B. M. and Sinclair, R., MRS Bulletin, 1928 (1990).Google Scholar
13. Fister, L. and Johnson, D. C., J. Am. Chem. Soc. 114, 46394644 (1992).Google Scholar
14. Fukuto, M., Hornbostel, M. D., and Johnson, D. C., J. Am. Chem. Soc. 116, 91369140 (1994).Google Scholar
15. Hornbostel, M. D., Hyer, E. J., Thiel, J. et al. , submitted J. Am. Chem. Soc. (1996).Google Scholar
16. Shannon, R. D., Acta Crystallogr. A 32, 751 (1976).Google Scholar
17. Shannon, R. D. and Prewitt, C. T., Acta Crystallogr. B 25, 925 (1969).Google Scholar
18. Noh, M. and Johnson, D. C., J. Am. Chem. Soc. 118, 91179122 (1996).Google Scholar
19. Noh, M., Thiel, J., and Johnson, D. C., Science 270, 11811184(1995).Google Scholar
20. Noh, M. and Johnson, D. C., Angewandte Chemie accepted (1996).Google Scholar
21. Johnson, C. D. and Johnson, D. C., Mat. Res. Soc. Symp. Proc. 434, 7580 (1996).Google Scholar