Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T12:12:07.797Z Has data issue: false hasContentIssue false

Preparation of CdS/ZnO Core/shell Structured Nanoparticles by Hydrothermal Method

Published online by Cambridge University Press:  21 March 2011

Chunhua Yan
Affiliation:
State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China
Lingdong Sun
Affiliation:
State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China
Xuefeng Fu
Affiliation:
State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China
Chunsheng Liao
Affiliation:
State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China
Get access

Abstract

CdS and ZnO capped CdS (CdS/ZnO) semiconductor nanoparticles were synthesized via hydrothermal method by thermal decomposition of the cysteine-cadmium and Zn(OH)42− complex precursors. Both of the photoluminescence properties and structure characterization confirmed the core/shell structure as expected. Compared to CdS nanoparticles, the band-gap emission of CdS/ZnO was greatly improved, that means the capping layer of ZnO modified the surface of CdS and reduced the surface defects effectively. ED and XRD confirmed the formation of hexagon phased CdS and the TEM image indicated the size of CdS/ZnO was about 20 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Henglein, A., Chem. Rev. 89, 1861 (1991).Google Scholar
2. Hasselbarth, A., Eychmuller, A. and Weller, H., Chem. Phys. Lett. 203, 271 (1993).Google Scholar
3. Tian, Y., Newton, T., Kotov, N., Guldi, D., Fendler, J. J. Phys. Chem. 100, 8927 (1996).Google Scholar
4. Danek, M., Jensen, K. F., Murray, C. B., Bawendi, M.G., Chem. Mater. 8, 173 (1996).Google Scholar
5. Mews, A., Eychmuller, A., Giersig, M., Schooss, D., Weller, H. J. Phys. Chem. 98, 934 (1994).Google Scholar
6. Spahnel, L.; Haase, M.; Weller, H. J. Am. Chem. Soc. 109, 5649 (1987).Google Scholar
7. Hoener, C. F., Allan, K. A., Bard, A. J., Campion, A., Fox, M. A., Mallouk, T.E., Webber, S. E., White, J. M. J. Phys. Chem. 96, 3812 (1992).Google Scholar
8. Rodriguez-Viejo, J., Jensen, K. F., Mattoussi, H., Michel, J., Dabbousi, B.O., Bawendi, M.G. Appl. Phys. Lett. 70(16), 2132 (1997).Google Scholar
9. Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., Bawendi, M.G. J. Phys. Chem. B 101 (46), 9463 (1997).Google Scholar
10. Schlamp, M. C., Peng, X. G., Alivisatos, A. P., J. Appl. Phys. 82(11), 5837 (1997).Google Scholar
11. Peng, X. G., Schlamp, M. C., Kadavanich, A. V., Alivisatos, A. P., J. Am. Chem. Soc. 119, 7019 (1997).Google Scholar
12. Zhang, J., Sun, L. D., Pan, H. Y, Liao, C. S., Yan, C. H., New J Chem., in press.Google Scholar