Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T02:26:24.708Z Has data issue: false hasContentIssue false

Preparation and Transition Temperature of Ca‐Substituted Yba2Cu4O8

Published online by Cambridge University Press:  28 February 2011

T. Miyatake
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, Shinonome, Koto‐ku, Tokyo 135, Japan
K. Yamaguchi
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, Shinonome, Koto‐ku, Tokyo 135, Japan
T. Takata
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, Shinonome, Koto‐ku, Tokyo 135, Japan
S. Gotoh
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, Shinonome, Koto‐ku, Tokyo 135, Japan
N. Koshizuka
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, Shinonome, Koto‐ku, Tokyo 135, Japan
S. Tanaka
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, Shinonome, Koto‐ku, Tokyo 135, Japan
Get access

Abstract

Samples of Y1‐xCaxBa2Cu4O8 are prepared by means of a new high pressure technique employing the oxygen‐HIP. We find that the transition temperature increases with Ca content, and that Tc=90K is realized at x=0.1. These data are explained by the hole concentration, i.e. average charge per [Cu‐O] site. KEY‐WORDS: YBa2Cu4O8, Ca‐substitution, Transition temperature, Hole concentration

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tokura, Y., Torrance, J.B., Huang, T.C. and Nazzal, A.I., Phys.Rev. B38, 7156 (1988).Google Scholar
2 Marshall, A.F., Barton, R.W., Char, K., Kapitulnik, A., Oh, B., Hammond, R.H. and Laderman, S.S., Phys.Rev. B37, 9353(1988).Google Scholar
3 Karpinskl, J., Kaldis, E., Jilek, E., Rusiecki, S. and Bucher, B., Nature 336, 660(1988).Google Scholar
4 Morris, D.E., Nickel, J.H., Wei, J.Y.T., Asmer, N.G., Scott, J.S., Scheven, U.M., Hultgren, C.T., Markelz, A.G., Post, J.E., Heaney, P.J., Veblen, D.R. and Hazen, R.M., Phys.Rev. B39, 7347(1989).Google Scholar
5 Cava, R.J., Karajewski, J.J., Peck, W.F. Jr, Batlogg, B., Rupp, L.W. Jr, Fleming, R.M., James, A.C.W.P. and Marsh, P., Nature 338, 328 (1989).Google Scholar
6 Itti, R., (private communication).Google Scholar