Skip to main content Accessibility help

Preparation and Properties of Infrared Transparent Condutive Thin Films

  • Yiding Wang (a1), Li Li (a2), Junjing Chen (a3), Zhenyu Song (a4), Yupeng An (a5) and Yu Zhang (a6)...


This paper presents results for infrared transparent and conducting thin films based on In2O3. The films have been prepared by magnetrons sputtering equipment with different condition. Typical transmittance of 70%-80% with a film sheet resistance of 80-300Ω/□ in the 3.5-5.0μrn region has been achieved.

Optically transparent and electrically conductive semiconductor Oxide films have been extensively studied in recent years. Such films have been prepared by various methods. In general, these films have high visible transmittance, but are opaque in the IR wavelength range of 1-12μm IR transmission. The infrared transparent and electrically conductive thin films are useful in certain important applications. For example, these films can be use as antistatic coatings, and while permitting a reasonable transmission coefficient for IR. Another obvious application is to serve as the conducting electrode for various optical devices where good infrared transmission is important. So, it is important to research indium oxide base infrared (3-5 um) transparent conduction thin films.

It has been developed that preparation condition influence on properties of thin films. Such as the sputtering time, and pressure, and power, and the substrate temperature, had great influence on the crystal structure, optical and electrical properties of In2O3-based thin films.

The In2O3-based thin films obtained were characterized and analyzed by X-ray Diffractometer (XRD), Atomic Force Microscope (AFM), Vander Pauw Method and Fourier Transform Infrared Spectroscopy (FTIR).



Hide All
1 FP, Yan, Wang, L, Wei, H, YJ, Fu, Jian, W, Zheng, K, XQ, Mao, Li, J, LS, Lou, Peng, J, and SS, Jian. Acta Physica Sinica., 58, 17931797, (2009).
2 FP, Yan, Wei, Y, YJ, Fu, Wei, H, TR, Cong, Wang, L, YF, Li, Lu, P, Liu, Y, PL, Tao, MX, Qu, and SS., Jian Acta Physica Sinica., 58, 321327, (2009).
3 FengPing, Yan, YiFan, Li, Lin, Wang, TaoRong, Gong, Peng, Liu, Yang, Liu, Pei-Ling, Tao, MeiXia, Qu, ShuiSheng, Jian. Acta Physica Sinica., 57, 57355741, (2008).
4 Badeker, K. Phys, 22, 749 (1907).
5 Lehmann, H.W. and Widmer, R. Thin Solid Films, 27, 9368 (1975).
6 Kim, H. Gilmore, C.M. Horwitz, J.S. and Pique, A. Appl.Phys.Lett, 76, 259261 (2000)
7 Shanthi, E. Duta, V. A. Banerjee and Chopra, K.L. J. Appl.Phys., 51, 62436251 (1980).
8 Shanthi, E. Duta, V. Banerjee, A. and Chopra, K.L. J. Appl.Phys., 53, 16151621 (1982).
9 Xiu, F.X. Yang, Z. Mandalapu, L.J. Zhao, D.T. and Liu, J.L.. Appl. Phys. Lett., 87, 152101 (2005)
10 Wickersham, C.E. Greene, J.. Phys.Status Solid A, 47, 329 (1978).
11 Vossen, J.L, RCAREV., 32, 269 (1971).
12 Avaritsotis, J.N. and Howson, R.P.. Thin Solid Films., 77, 351 (1981).
13 Golan, G. Axelevitch, A. and Rabinovitch, E.. J. Microelectronics., 29, 689 (1998).
14 Synowicki, R.A.. Thin Solid Films., 313-314, 394 (1998).


Preparation and Properties of Infrared Transparent Condutive Thin Films

  • Yiding Wang (a1), Li Li (a2), Junjing Chen (a3), Zhenyu Song (a4), Yupeng An (a5) and Yu Zhang (a6)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed