Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-21T02:43:33.441Z Has data issue: false hasContentIssue false

The Preparation and Economics of Silicon Carbide Matrix Composites by Chemical Vapor Infiltration

Published online by Cambridge University Press:  15 February 2011

Yvette G. Roman
Affiliation:
Centre for Technical Ceramics-TNO, P.O. Box 595, 5600 AN Eindhoven, The Netherlands
David P. Stinton
Affiliation:
Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6063, USA
Get access

Abstract

This paper describes a number of processing techniques that are currently in use for the development and production of continuous fiber reinforced ceramic composite materials. The limited number of available processing routes are compared with respect to the resulting material properties.

As it appears, the Chemical Vapor Infiltration technique is one of the most extensively developed methods. During the last decade, at least five different modifications of the isobaric isothermal CVI principle have been developed; each route having its own benefits. CVI techniques have now been developed to the extent that industrial commercialization is being realized. Projected cost aspects of the various CVI manufacturing techniques have been examined and compared.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Akimune, Y., Ogasawara, T., Akibu, T., Hirosaki, N., J. Mat. Sci. Lett. 10 (1991), p 689692.Google Scholar
2. Chia, K.Y., Lau, S.K., Cer. Eng. Sci. Proc. 12 no 9-10 (1991), p 18451861.Google Scholar
3. Jamet, J.F., Lamicq, P., 6th Eur. Conf. Comp Mat., Woodhead Publ. Lim. (1993), p 735742.Google Scholar
4. Chiang, Y., Haggerty, J.S., Messner, R. P., Demetry, C., Ceram, Bull. 68 [2] (1989), p 420428.Google Scholar
5. Brennan, J.J., Strife, J.R., Prewo, K.M., 4th Int. Sump. on Cer. Mat. & Comp. for Engines Ed. (1991), p 84117.Google Scholar
6. Fitzer, E., Gadow, R., “SiC-whiskerverstärktes reaktionsgebundenes Silziumcarbid (Herstellung und Eigenschaften)”, Fortschrittsberichte der Deutschen Keramischen Gesellschaft, Band 2 Heft 2 (1986/1987), p 1725.Google Scholar
7. Russell-Floyd, R.S., Cooke, R.G., Harris, B., Cer. Technology Int. (1994), p 6265.Google Scholar
8. Fitzer, E., Gadow, R., Am. Ceram. Soc. Bull. 65 [2] (1986), p 326335.Google Scholar
9. Stinton, D.P., Lackey, W.J., Cer. Eng. Sci. Proc., 6 no 7-8, (1985), p 707713.Google Scholar
10. Reagan, P., J. de Physique IV Coll. C3, 3 (1993), p 541548.Google Scholar
11. Noda, T., Araki, H., Abe, F., Okada, M., J. Nuclear Mat. [191–194] (1992), p 539543.Google Scholar
12. Clegg, W.J., Seddon, L.R., 4th Int. Sump. on Cer. Mat. & Comp. for Engines, Elsevier Applied Science, (1991), p 789794.Google Scholar
13. Baskaran, S., Halloran, J. W., Ceram. Eng. Sci. Proc., 14 no 9-10, (1993), p 813823.Google Scholar
14. Steffier, W. S., Ceram. Eng. Sci. Proc. 9–10 (1993), p 10451057.Google Scholar
15. Jenkin, W.C., US patent 3160517, 8 dec. (1964).Google Scholar
16. Roman, Y.G., Steijsiger, C., Gerretsen, J., Metselaar, R., Proc. 17th annual Conf. Comp. Adv. Ceram., (1993), p 11901198.Google Scholar
17. Besmann, T.M., Lowden, R.A., Stinton, D.P., McLaughlin, J.C., Sheldon, B.W., Starr, T.L. and Smith, A.W., “Processing Science for Chemical Vapor Infiltration”, WR-TR-94-4044, U.S. Air Force Wright Laboratory, March (1994).Google Scholar
18. Gonon, M., Fantozzi, G., Murat, M., Disson, J.D., 6th Eur. Conf. Comp Mat., Woodhead Publ. Lim. (1993), p 437445.Google Scholar
19. Vaidyanathan, K. R., Sankar, J., Kelkar, A. D., Stinton, D.P.., Headinger, M. H., Ceram. Eng. Sci. Proc., 14 no 9-10 (1993), p 10161027.Google Scholar
20. Parlier, M., Grenier, T., Reneey, S., Passilly, B., Mouchon, E., Bruneton, E., Colomban, Ph., 4th Int. Symp. on Cer. Mat. & Comp. for Engines, Elsevier Applied Science, (1991), p 726734.Google Scholar
21. Yoshida, H., Miyata, N., Hakoshima, J., Sagawa, M., Naito, K., Ishhikawa, S., Yamagishi, C., Ceram. Eng. Sci. Proc., 14 no 9-10, (1993), p 11331140.Google Scholar
22. Courtright, E.L., Ceram. Eng. Sci. Proc. 12 no 9-10 (1991), p 17251744.Google Scholar
23. Miyahara, K., Sugita, T., Watanabe, T., Koga, S., Sasa, T., Proc. 1st. Japan Int. SAMPA Symp. nov - dec (1989), p 10961101.Google Scholar
24. Results Brite project BREU-CT91-0477, TNO and DASA (1993).Google Scholar
25. Steijsiger, C., Lankhorst, A. M., Roman, Y.G., 6th Eur. Conf. Comp. Mat. and Associated Conferences, 20-24 september (1993), p 603608.Google Scholar
26. Tai, N., Chou, T., J. Am. Ceram. Soc. 72 no 3 (1989), p 414420.Google Scholar
27. Fedou, R., Langlais, F., Naslain, R., J. Mat. Synthesis and Processing, 1 no 1 (1993), p 4352. Ibid [2] p 61-74.Google Scholar
28. Lin, Y.S., Burggraaf, A.J., Chem. Eng. Sci. 46 no 12 (1991), p 30673080.Google Scholar
29. Gupte, S.M., Tsamopoulos, J.A., J. Electrochem. Soc. 137 no 5 (1990), p 16261638.Google Scholar
30. Starr, T., Ceram. Sci. Eng. 9 no 7-8 (1988), p 803812.Google Scholar
31. Starr, T., Proc. 10th Int. Conf on CVD, Eds. Collen, G.W., The Electrochem. Soc. (1987), p 11471155.Google Scholar
32. Rossignol, J.Y., Langlais, F., Naslain, R., Proc. 9th Int. Conf. on CVD, Eds. Robinson, Mc. D., The Electrochem. Soc. (1984), p 596614.Google Scholar
33. Chung, G.Y., McCoy, B. J., J. Am. Ceram. Soc. 74 no 4 (1991), p 746751.Google Scholar
34. Roman, Y.G., Steijsiger, C., Gerretsen, J., Metselaar, R., “The preparation of carbonreinforced silicon carbide composites using the Isothermal Forced flow CVI technique”, Ceram. Eng. Sci. Proc. Sept/Oct. (1993), p. 11901199.Google Scholar
35. Roman, Y.G., Gerretsen, J., “Ceramic composites by Chemical Vapor Infiltration”, Proc. Int. Symp. on Adv. Mat. for Lightweight Structures, ESTEC, Noordwijk, March (1994), p. 281286.Google Scholar