Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T11:02:27.920Z Has data issue: false hasContentIssue false

Preparation and Characterization of Microcrystalline and Epitactially Grown Emitter Layers for Silicon Solar Cells

Published online by Cambridge University Press:  09 August 2011

K. Lips
Affiliation:
Hahn-Meitner-Institut, Abt. Photovoltaik, Rudower Chaussee 5, 12489 Berlin, Germany
J. Platen
Affiliation:
Hahn-Meitner-Institut, Abt. Photovoltaik, Rudower Chaussee 5, 12489 Berlin, Germany
S. Brehme
Affiliation:
Hahn-Meitner-Institut, Abt. Photovoltaik, Rudower Chaussee 5, 12489 Berlin, Germany
S. Gall
Affiliation:
Hahn-Meitner-Institut, Abt. Photovoltaik, Rudower Chaussee 5, 12489 Berlin, Germany
I. Sieber
Affiliation:
Hahn-Meitner-Institut, Abt. Photovoltaik, Rudower Chaussee 5, 12489 Berlin, Germany
L. Elstner
Affiliation:
Hahn-Meitner-Institut, Abt. Photovoltaik, Rudower Chaussee 5, 12489 Berlin, Germany
W. Fuhs
Affiliation:
Hahn-Meitner-Institut, Abt. Photovoltaik, Rudower Chaussee 5, 12489 Berlin, Germany
Get access

Abstract

We have deposited thin B- and P-doped Si layers by electron cyclotron resonance CVD on c- Si (4 Ωcm, CZ) and on quartz glass substrates at T=325°C. Films grown on quartz glass are of microcrystalline nature with crystalline volume fractions of about 70 % and a resistivity ranging from 0.01 - 10 (Ωcm)−1 depending on doping concentration. The doping efficiency is close to unity with the carrier mobility being independent of doping concentration for both B- and Pdoping. Films grown on c-Si, on the other hand, exhibit perfect homoepitaxial morphology when the gas phase doping concentration exceeds 1000 ppm and 5000 ppm for P- and B-doping, respectively. The quality of the films is tested by preparing thin film emitter solar cells. We find efficiencies above 11 % for cells without ARC. The result are compared to cells with diffused emitters, otherwise prepared with the same technological steps.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Keppner, H., Kroll, U., Torres, P., Meier, J., Fischer, D., Goetz, M., Tscharner, R. and Shah, A., in 25th IEEE PVSC, Washington D.C., 1996, p. 669.Google Scholar
2 Yamamoto, K., Yoshimi, M., Suzuki, T., Tawada, Y., Okamoto, T. and Nakajima, A., in 2nd World Conf. on PVSEC, Vienna, Austria, 1998, to be publ.Google Scholar
3 MOller, P., Beckers, I., Conrad, E., Elstner, L. and Fuhs, W., in 25th IEEE PVSC, Washington D.C., 1996, p. 673.Google Scholar
4 Conrad, E., Elstner, L., Fuhs, W., Henrion, W., Muller, P., Selle, B. and Zeimer, U., in 26th PVSC, Anaheim, Ca, 1997, p. 755.Google Scholar
5 Carius, R., Finger, F., Backhausen, U., Luysberg, M., Hapke, P., Houben, L., Otte, M. and Overhof, H., in Mat. Res. Soc. Symp., edited by Wagner, S., Hack, M., Schiff, E. A., Schropp, R. and Shimizu, I. (MRS, San Francisco, 1997), Vol.467, p. 283.Google Scholar
6 Middya, A. R., Guillet, J., Brenot, R., Perrin, J., Bouree, J. E., Longeaud, C. and Kleider, J. P., in Mat. Res. Soc. Symp. (MRS, San Francisco, 1997), Vol.467, p. 271.Google Scholar
7 Rogers, J. L., Andry, P. S., Varhue, W. J., McGaughnea, P., Adams, E. and Kontra, R., Appl. Phys. Lett. 67, 971 (1995).Google Scholar
8 Mui, D. S. L., Fang, S. F. and Morkog, H., Appl. Phys. Lett. 59, 1887 (1991).Google Scholar
9 Varhue, W. J., Rogers, J. L., Andry, P. S. and Adams, E., Appl. Phys. Lett. 68, 349 (1996).Google Scholar
10 Yamada, H. and Torni, Y., Appl. Phys. Lett. 50, 386 (1987).Google Scholar
11 Tae, H.-S., Hwang, S.-H., Park, S.-J., Yoon, E. and Whang, K.-W., J. Appl. Phys. 78, 4112 (1995).Google Scholar