Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T01:20:06.361Z Has data issue: false hasContentIssue false

Preparation and Characterization of Epitaxial Yttrium Silicide on (111) Silicon

Published online by Cambridge University Press:  28 February 2011

M. Gurvitch
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
A. F. J. Levi
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
R. T. Tung
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
S. Nakahara
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
Get access

Abstract

Epitaxial YSi2-x films have been fabricated. The smooth ∼430 Å thick silicide films on Si(111) substrates were characterized by a Rutherford backscattering minimum channeling yield, Xmin = 8%. The best previously reported result, Xmin = 26%, was achieved using a relatively exotic e-beam heating method. By contrast we formed YSi2-x using a straightforward furnace annealing technique. We used improved Si surface cleaning procedures, sputter-deposited Y films, and performed two-stage anneals in a vacuum of ∼ 10−8 torr. The results of our work establish YSi2-x as one of the best epitaxial silicides. We describe our preparation technique as well as the evidence for epitaxy. Electrical measurements (Schottky barrier, temperature dependent resistivity, Hall effect) are also presented. Low temperature resistivity of YSi2-x is found to obey simple T5 Bloch's law. Based on resistivity data, YSi2-x appears to have a Debye temperature of 310 K. According to Hall measurements, it is an electronic conductor with n = 2.7 × 1022 cm−3 and the mean free path of electrons is ∼ 87 Å at 4.2 K. We measure a Schottky barrier height of 0.36 eV between YSi2-x, and n-type Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tung, R. T., Levi, A. F. J. and Gibson, J. M., J. of Vac. Sci. and Technol. B4, 1435 (1986).Google Scholar
2. Chen, L. J., Cheng, H. C. and Lin, W. T., in MRS Symposia Proc. 54, 245 (1986);Google Scholar
Chang, Y. S., Chen, J. J., and Chen, L. J., MRS Symposia Proc. p. 57.Google Scholar
3. Baglin, J. E., d'Heurle, F. M., and Peterson, C. S., Appl. Phys. Lett. 36, 594 (1980).Google Scholar
4. Thompson, R. D., Tsaur, B. Y., and Tu, K. N., Appl. Phys. Lett. 38, 535 (1981).Google Scholar
5. Lau, S. S., Pai, C. S., Wu, K. S., Kuech, T. F., and Liu, B. X., Appl. Phys. Lett. 41, 77 (1982).Google Scholar
6. Knapp, J. A., Picraux, S. T., Wu, C. S., and Lau, S. S., J. Appl. Phys. 58, 3747 (1985).Google Scholar
7. Baglin, J. E. E., d'Heurle, F. M., and Peterson, C. S., J. Appl. Phys. 52, 2841 (1981).Google Scholar
8. Wu, C. S., Lau, S. S., Kuech, T. F., and Liu, B. X., Thin Solid Films, 104, 175 (1983).Google Scholar
9. Knapp, J. A. and Picraux, S. T., Appl. Phys. Lett. 48, 466 (1986).Google Scholar
10. Knapp, J. A. and Picraux, S. T., Mat. Res. Soc. Symp. Proc.Google Scholar
11. Tu, K. N., Thompson, R. D. and Tsaur, B. Y., Appl. Phys. Lett. 38, 627 (1981).Google Scholar
12. Gurvitch, M., Manchanda, L., and Gibson, J. M., submitted to Appl. Phys. Lett.Google Scholar
13. Ishizaka, A., Nakagawa, K., and Shiraki, Y., Collected Papers of MBE-CST-2, Tokyo, p. 183 (1982).Google Scholar
14. Huggins, H. A. and Gurvitch, M., J. Vac. Sci. Technol. A1, 77 (1983).Google Scholar
15. Materials Preparation Center, Ames Laboratory, Ames, IA 50011.Google Scholar
16. JCPDS Powder Diffraction Files, Int. Centre for Diffr. Data, Swarthmore, Pennsylvania, 1984.Google Scholar
17. Hensel, J. C., Mat. Res. Soc. Symp. Proc. 54, 499 (1986).Google Scholar
18. Gurvitch, M., Chosh, A. K., Lutz, H., and Strongin, M., Phys. Rev. B 22, 128 (1980).Google Scholar
19. Gurvitch, M., Phys. Rev. B 24, 7404 (1981).Google Scholar
20. McMillan, W. L., Phys. Rev. 167, 331 (1968).Google Scholar
21. Gurvitch, M., Physica B 135, 276 (1985).Google Scholar
22. Gurvitch, M., unpublished.Google Scholar
23. Mattheiss, L. F., to be published.Google Scholar
24. Newcomb, G., Lonzarich, G. G., Hebard, A. F., Levi, A. F. J., unpublished. These workers find ρ(293 K) = 12.5 μΩcm, ρ(4.2 K) = 0.5 μΩcm, and Tc = 1.5 K in high quality bulk CoSi2.Google Scholar
25. Newcomb, G., Lonzarich, G. G., to be published.Google Scholar
26. Badoz, P. A., Briggs, A., Rosencher, E., and Arnoud d'Aviaya, F. J. Physique Lett. 46, L979 (1985).Google Scholar
27. White, A. E., Short, K. T., Dynes, R. C., Garno, J. P., and Gibson, J. M. Appl. Phys. Lett. 50, 95 (1987).Google Scholar