Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T08:50:23.731Z Has data issue: false hasContentIssue false

Preparation and characterization of concentric-tubular composite microstructures using the template synthesis method

Published online by Cambridge University Press:  10 February 2011

Veronica M. Cepak
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, CO 80523
Charles R. Martin
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, CO 80523
Get access

Abstract

The template method has been used to prepare concentric-tubular composite microstructures. These composite structures consist of an outer tubule composed of one material encapsulating concentric inner tubules composed of other materials. Tubular composites of this type consisting of metals, semiconductors, polymers, and Li-ion intercalation materials have been prepared. The chemical strategies used to prepared these composite structures include electroless plating of Au, electropolymerization of electronically conductive and insulating polymers, electrodeposition of metals and semiconductors, and sol-gel synthesis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Martin, C. R., Science 266, 1961 (1994).Google Scholar
2. Martin, C. R., Acc. Chem. Res. 28, 61 (1995).Google Scholar
3. Martin, C. R., Chem. Mater. 8, 1739 (1996).Google Scholar
4. Hulteen, J. C., Martin, C. R., J. Mater. Chem. 7, 1075 (1997).Google Scholar
5. Cepak, V. M., Hulteen, J. C., Che, G., Jirage, K. B., Lakshmi, B. B., Fisher, E. R., Martin, C. R., Yoneyama, H. J., Chem. Mater. 9, 1065 (1997).Google Scholar
6. Menon, V. P., Martin, C. R., Anal. Chem. 67, 1920 (1995).Google Scholar
7. Nishisawa, M., Menon, V. P., Martin, C. R., Science 268, 700 (1995).Google Scholar
8. Oyama, N., Ohsaka, T., Ohnuki, Y., Suzuki, T., J. Electrochem. Soc. 134, 3068 (1987).Google Scholar
9. Yoko, T., Kamiya, K., Sakka, S., J. Ceram. Soc. Jpn. 95, 150 (1987).Google Scholar
10. Yoko, T., Yuasa, A., Kamiya, K., Sakka, S., J. Electrochem. Soc. 138, 2279 (1991).Google Scholar
11. Lincot, D., Peulon, S., Adv. Mater. 8, 166 (1996).Google Scholar
12. Shin, H., Collins, R. J., Guire, M. R. D., Heuer, A. H., Sukenik, C. N., J. Mater. Res. 103, 699 (1995).Google Scholar
13. Shin, H., Collins, R. J., Guire, M. R. D., Heuer, A. H., Sukenik, C. N., J. Mater. Res. 103, 692 (1995).Google Scholar
14. Kavan, L., Gratzel, M., Gilbert, S. E., Lemenz, C. K., Scheel, H. I., J. Am. Chem. Soc. 118, 6716 (1996).Google Scholar