Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T08:11:35.578Z Has data issue: false hasContentIssue false

Preparation and Characterization of Ag-Cluster in Poly(Methylmethacrylate)

Published online by Cambridge University Press:  10 February 2011

Naohisa Yanagihara
Affiliation:
Department of Materials Science and Engineering, Teikyo University, 1–1 Toyosatodai Utsunomiya 320, Japan
Yoshitaka Ishii
Affiliation:
Department of Materials Science and Engineering, Teikyo University, 1–1 Toyosatodai Utsunomiya 320, Japan
Takanori Kawase
Affiliation:
Department of Materials Science and Engineering, Teikyo University, 1–1 Toyosatodai Utsunomiya 320, Japan
Toshimare Kaneko
Affiliation:
Department of Materials Science and Engineering, Teikyo University, 1–1 Toyosatodai Utsunomiya 320, Japan
Hisashi Horie
Affiliation:
Department of Materials Science and Engineering, Teikyo University, 1–1 Toyosatodai Utsunomiya 320, Japan
Toru Hara
Affiliation:
Department of Materials Science and Engineering, Teikyo University, 1–1 Toyosatodai Utsunomiya 320, Japan
Get access

Abstract

Solid sols of silver in poly(methylmethacrylate), Ag/PMMA, were prepared by bulk polymerization of methyl methacrylaite (MMA) with benzoyl peroxide (BPO) as an initiator in the presence of silver(I) trifluoroacetate. Ag/PMMAs were characterized by visible spectroscopy. Effects of the concentration of initiator, the concentration of silver (I) complex and the heat-treatment time on the formation of silver cluster were studied in detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rademann, K., Ber. Bunsenges. Phys. Chem. 93, 653(1989).Google Scholar
2. Schmid, G., Aspects Homogeneous Catal. 7, 1(1990).Google Scholar
3. Duncan, M.A. and Rouvray, D. H., Scientific American 1989, 110.Google Scholar
4. Heolweil, E.J. and Hochestrasser, R.M., J. Chem. Phy. 82, 4762(1985).Google Scholar
5. Ricard, D., Roussignol, P. and Flytzanis, C., Opt. Lett. 10, 511(1985).Google Scholar
6. Hache, F., Ricard, D., Flytzanis, C. and Kreibig, U., Appl. Phys. A47, 347(1988).Google Scholar
7. Kreibig, U., Appl. Phys. 10, 255(1976)Google Scholar
8. Akai, T., Kadono, K., Yamanaka, H., Sakaguchi, T., Miya, M., and Wakabayashi, H., J. Ceram. Soc. Jpn. 101, 105(1993).Google Scholar
9. Takahashi, I., Yoshida, M., Manabe, Y., and Yohda, T., J. Mater. Res. 10, 362(1995).Google Scholar
10. Clain, A.K.St. and Taylor, L.T., J. Appl. Polym. Sci. 28, 2393(1983).Google Scholar
11. Ogawa, S., Hayashi, Y., Kobayashi, N., Tokizaki, T., and Nakamura, A., J. Appl. Phys. 33, L331(1994).Google Scholar
12. Nakao, Y., J. Chem. Soc., Chem. Commun. 1993. 826.Google Scholar
13. Nakao, Y., Kobunshi 43, 852(1994); Zairyou Kagaku 31, 28(1994).Google Scholar
14. Soto, A.N., Yanagihara, N., and Ogura, T., J. Coord. Chem. 38, 65(1996).Google Scholar
15. Linnert, T., Mulvaney, P., Henglein, A., and Weiler, H., J. Am. Chem. Soc. 112, 4657(1990).Google Scholar
16. Kreibig, U. and Genzel, L., Surface Science 156, 678(1985).Google Scholar
17. Fornasiero, D. and Grieser, F., J. Colloid Interface Sci. 141, 168(1991).Google Scholar
18. Heard, S.M., Grieser, F., and Barraclough, C.G., J. Colloid Interface Sci. 93, 545(1983).Google Scholar
19. Liu, L.C. and Risbud, S.H., J. Appl. Phys. 68, 28(1990).Google Scholar
20. Ekimov, A.I., Efros, A. L., and Onushchenko, A.A., Solid State Commun. 56, 921(1985).Google Scholar
21. Fu, J., Osaka, A., Nanba, T., and Miura, Y., J. Mater. Res. 9, 493(1994).Google Scholar
22. Nasu, H., Kaneko, S., Tsunetomo, K., and Kamiya, K., J. Ceram. Soc. Jpn. 99, 266(1991).Google Scholar