Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-07T21:43:50.338Z Has data issue: false hasContentIssue false

Preferred Orientation, Grain Sizes and Grain Boundaries of Chalcopyrite-Type Thin Films

Published online by Cambridge University Press:  01 February 2011

Daniel Abou-Ras
Affiliation:
daniel.abou-ras@hmi.de, Hahn-Meitner-Institut Berlin, Solar Energy - Technology, Glienicker Strasse 100, Berlin, 14109, Germany, +49 30 8062 3231, +49 30 8062 3173
Melanie Nichterwitz
Affiliation:
melanie.nichterwitz@hmi.de, Hahn-Meitner-Institut Berlin, Glienicker Strasse 100, Berlin, 14109, Germany
Christian A. Kaufmann
Affiliation:
kaufmann@hmi.de, Hahn-Meitner-Institut Berlin, Glienicker Strasse 100, Berlin, 14109, Germany
Susan Schorr
Affiliation:
susan.schorr@hmi.de, Hahn-Meitner-Institut Berlin, Glienicker Strasse 100, Berlin, 14109, Germany
Hans-Werner Schock
Affiliation:
hans-werner.schock@hmi.de, Hahn-Meitner-Institut Berlin, Glienicker Strasse 100, Berlin, 14109, Germany
Get access

Abstract

Chalcopyrite-type thin films - CuInS2, CuInSe2, CuGaSe2, and Cu(In,Ga)Se2 - in various completed solar cells were studied in cross-section by means of electron-backscatter diffraction (EBSD). Valuable information on grain sizes, local grain orientations, film textures, and grain boundaries were extracted from the EBSD linescans and maps. The grain-size distributions from the chalcopyrite-type thin films can be represented well by lognormal distribution functions. The EBSD measurements on CuGaSe2 thin film reveal a <110> fiber texture, in good agreement with x-ray diffraction texture analysis performed on the same sample. The EBSD maps from all samples studied exhibit considerable twinning in the chalcopyrite-type thin films. Indeed, the most frequent types of grain boundaries in these thin films are (near) Σ3 60°-<221> and 71°-<110> twins. It is shown that rotational 180°-<221> twins (which are symmetrically equivalent to 71°-<110>) are more frequently found than anion- or cation-terminated 60°-<221> twin boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gabor, A. M., Tuttle, J. R., Bode, M. H., Franz, A., Tennant, A. L., Contreras, M. A., and R. Noufi, Appl. Phys. Lett. 65(2), 148 (1998).Google Scholar
2. Unold, T., Sieber, I., Ellmer, K., Appl. Phys. Lett. 88(21), 213502 (2006).Google Scholar
3. Klaer, J., Bruns, J., Henninger, R., Siemer, K., Klenk, R., Ellmer, K., and Bräunig, D., Semicond. Sci. Technol. 13, 1456 (1998).Google Scholar
4. Aitchison, J. and Brown, J. A. C., The lognormal distribution (Cambridge, University Press, 1966).Google Scholar
5. Schlenker, T., Valero, M. Luis, Schock, H. W., and Werner, J. H., J. Cryst. Growth 264, 178 (2004).Google Scholar
6. Eberl, D. D., Drits, V. A., Środoń, S., Am. J. Sci. 298, 499 (1998).Google Scholar
7. Klenk, R., Walter, T., Schock, H. W., Cahen, D., Adv. Mater. 5, 114 (1993).Google Scholar
8. Humphreys, F. J., J. Mater. Sci. 36, 3833 (2001).Google Scholar
9. Wolf, U., Ernst, F., Muschik, T., Finnis, M.W., Fischmeister, H. F., Phil. Mag. A66, 991 (1992).Google Scholar
10. Krejci, M., Zogg, H., Tiwari, A. N., Schwander, P., Heinrich, H., and Kostorz, G., J. Appl. Phys. 81(9), 6100 (1997).Google Scholar
11. Persson, C. and Zunger, A., Appl. Phys. Lett. 87(21), 211904 (2005).Google Scholar