Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T00:40:22.943Z Has data issue: false hasContentIssue false

Predominant Factors of Lithium Ion Conductivity in Perovskite-Type Oxides

Published online by Cambridge University Press:  15 February 2011

Y. Inaguma*
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
T. Katsumata
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
J. Yu
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
M. Itoh
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
Get access

Abstract

The relation between the structure and the lithium ion conductivity in perovskite-type oxides ABO3 was investigated from the viewpoint of the the arrangement of A-site ions. It was showed that the conductivity in La2/3-xLi3x□1/3–2xTiO3 is strongly influenced by not only the concentration but also the ordered arrangement of skeletal A-site ions. Further the activation energy for ion conduction was found to be dominated by the covalency of B-O bond in addition to the bottleneck size.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Latie, L., Villeneuve, G., Conte, D. and Flem, G. L., J. Solid State Chem. 51, 293 (1984).Google Scholar
2. Belous, A. G., Novitsukaya, G. N., Polyanetskaya, S. V. and Gornikov, Yu. I., Izv. Akad. Nauk SSSR, Neorg. Mater. 23, 470 (1987).Google Scholar
3. Inaguma, Y., Chen, L., Itoh, M., Nakamura, T., Uchida, T., Ikuta, M. and Wakihara, M., Solid State Commun. 86, 689 (1993).Google Scholar
4. Inaguma, Y., Chen, L., Itoh, M., Nakamura, T., Solid State Ionics 70/71, 196 (1994).Google Scholar
5. Itoh, M., Inaguma, Y., Jung, W. H., Chen, L., Itoh, M., Nakamura, T., Solid State Ionics, 70/71, 203 (1994).Google Scholar
6. Oguni, M., Inaguma, Y., Itoh, M. and Nakamura, T., Solid State Commun. 91, 627 (1994).Google Scholar
7. Inaguma, Y., Yu, Jianding, Shan, Y.J., Itoh, M. and Nakamura, T., J. Electrochem. Soc. 142, L8 (1994).Google Scholar
8. Inaguma, Y., Matsui, Y., Shan, Y.J., Itoh, M. and Nakamura, T., Solid State Ionics 79, 91 (1995).Google Scholar
9. Inaguma, Y. and Itoh, M., Solid State Ionics 86–88, 257 (1996).Google Scholar
10. Katsumata, T., Matsui, Y., Inaguma, Y. and Itoh, M., Solid State Ionics, 86–88 165 (1996).Google Scholar
11. Inaguma, Y., Matsui, Y., Yu, J., Shan, Y.J., Nakamura, T. and Itoh, M., J. Phys. Chem. Solids in print(1997).Google Scholar
12. Stauffer, D., Introduction to Percolation Theory. 1st Ed. (Taylor and Francis, London, 1985);Google Scholar
Stauffer, D. and Aharnony, A., Introduction to Percolation Theory. 2nd Ed. (Taylor and Francis, London, 1992).Google Scholar
13. Izumi, F., J. Crystalogr. Soc. Jpn. 27, 23 (1985) andGoogle Scholar
in The Rietveld Method (Young, R. A., Ed.), Chap. 13, Oxford Univ. Press, Oxford (1993).Google Scholar
14. Abe, M. and Uchino, K., Mat. Res. Bull. 9, 147 (1974).Google Scholar
15. Shannon, R. D., Acta Cryst. A32, 751 (1976).Google Scholar