Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-17T21:30:13.504Z Has data issue: false hasContentIssue false

Prediction of Solid-Aqueous Equilibria in Cementitious Systems Using Gibbs Energy Minimization: I. Multiphase Aqueous - Ideal Solid Solution Models

Published online by Cambridge University Press:  10 February 2011

V.A. Sinitsyn
Affiliation:
Institute of Geochemistry, Mineralogy & Ore Formation, NAS Ukraine, 252180 Kyiv, Ukraine R&D Centre “META”, 46 Nauka Prrosp., 252650 Kyiv, Ukraine
D.A. Kulik
Affiliation:
R&D Centre “META”, 46 Nauka Prrosp., 252650 Kyiv, Ukraine State Scientific Center for Environmental Radiogeochemistry, 252180 Kyiv, Ukraine
M.S. Khodorivsky
Affiliation:
R&D Centre “META”, 46 Nauka Prrosp., 252650 Kyiv, Ukraine
I.K. Karpov
Affiliation:
Institute of Geochemistry SB RAS, 664033 Irkutsk, Russia
Get access

Abstract

Concrete and other cement-based materials are increasingly utilized as major structural components of the disposal facilities for low-level and intermediate-level radioactive waste (LLW/ILW). At the same time. cementitious materials function as engineered barriers against migration of radionuclides and other hazardous compounds [1]. Taking into account the expected operation times of such constructions, the long-term prediction of environmental interactions and stability of concretes is important for the development of reliable facilities for LLW/ILW disposal. Thermodynamic approach has been widely used to promote understanding of chemical phenomena in cementitious systems. Recently, several authors attempted to demonstrate usefulness of computer codes for description of the available experimental data and prediction of cement/water equilibria [1-5]. These calculations were based on the Law-of-Mass Action - Reaction Stoichiometry Algorithm (LMA-RSA), widely applied so far in speciation modeling [6]

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Lee, J., Roy, D., Mann, B. and Stahl, D., Mat.Res.Soc.Symp.Proc., 353 (1995).Google Scholar
2 Glasser, F., Macphee, D. and Lachovski, E., Mat.Res.Soc.Symp.Proc. 112 (1988).Google Scholar
3 Bennett, D., Read, D., Atkins, M., and Glasser, F., Jour. Nucl. Materials, 190 (1992).Google Scholar
4 Reardon, E., Waste Management, 12 (1992).Google Scholar
5 Kersten, M., Environ.Sci.Technol., 30 (1996).Google Scholar
6 Reed, M., Geoch.Cosmoch.Acta 46 (1982).Google Scholar
7 Kulik, D., Sinitsyn, V., and Karpov, I. (1997: this volume).Google Scholar
8 Karpov, I., Computer-aided physicochemical modeling in geochemistry. (Nauka publ., Novosibirsk. 1981), in Russian.Google Scholar
9 Shvarov, Yu., The algorithms to determine the equilibrum composition of multicomponent heterogeneous system. Ph.D. dissertation, Moscow State University (1982, in Russian).Google Scholar
10 Karpov, I., Kulik, D., Chudnenko, K., In: Water-Rock Interaction. 8. Eds: Kharaka, Y., Chudaev, O. (Balkema, Rotterdam, 1995).Google Scholar
11 Kulik, D., Ibid.Google Scholar
12 Kulik, D., Dmitrieva, S., Chudnenko, K. et al. (1997): Selektor-A test-version 3.113 for DOS. User's Manual (draft). (Brooklyn, 1997).Google Scholar
13 Greenberg, S. and Chang, T., J. Phys.Chem. 69 (1965).Google Scholar
14 Flint, E. and Wells, L., J.Nat. Bur.Stand. 12 (1934).Google Scholar
15 Roller, P. and Ervin, G. Jr., J.Am.Chem.Soc. 62 (1940).Google Scholar
16 Taylor, H., J.Chem. Soc. London, 276 (1950).Google Scholar
17 Atkins, M., Glasser, F., and Kindness, A., Cem. Coner. Res. 22 (1992).Google Scholar
18 Fuji, K. and Kondo, W., J.Amer.Ceram.Soc. 66 (1983).Google Scholar
19 Sinitsyn, V., Kulik, D., Khodorivski, M. et al. , Mat.Res.Soc.Symp.Proc. 465 (1997).Google Scholar
20 Taylor, H., Z. Krist. 41 (1992).Google Scholar
21 Taylor, H., Adv. Cem. Res. 1 (1987).Google Scholar
22 Johnson, J., Oelkers, E., and Helgeson, H., Comput. Geosci. 18 (1992).Google Scholar
23 Robie, R. and Hemingway, B., U.S.Geol.Surv.Bull. 2141 (1995).Google Scholar
24 Melnik, Yu., Genesis of Precambrian Iron Formations (Nauk.Dumka, Kyiv,1986) (in Russian).Google Scholar
25 Page, C. and Vennesland, O., Rev. Mater. Constr. 16 (1983).Google Scholar
26 Andersson, K., Allaard, B., Bengtsson, M., and Magnusson, B., Cem.Concr.Res., 19 (1989).Google Scholar