Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-11T08:22:38.696Z Has data issue: false hasContentIssue false

Precursors to the Photo-Ablation of Sodium Trisilicate Glass Due to Uv Excimer Irradiation

Published online by Cambridge University Press:  21 February 2011

P. A. Eschbach
Affiliation:
Washington State University, Pullman, WA 99164-2814
J. T. Dickinson
Affiliation:
Washington State University, Pullman, WA 99164-2814
S. C. Langford
Affiliation:
Washington State University, Pullman, WA 99164-2814
L. C. Jensen
Affiliation:
Washington State University, Pullman, WA 99164-2814
L. R. Pederson
Affiliation:
Pacific Northwest Laboratory, Richland, WA 99352
D. R. Baer
Affiliation:
Pacific Northwest Laboratory, Richland, WA 99352
Get access

Abstract

On polished sodium trisilicate glass surfaces, a fairly distinct threshold in laser fluence is observed to commence ablative etching. An incubation or induction effect is also seen where a series of laser pulses is required to induce etching. In this paper we examine features of the charged particle emission over a broader range of fluences (in particular, at lower fluences) to identify those factors which control the onset of etching. Laser--free electron heating is proposed as a dominant mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eschbach, P. A., Dickinson, J. T., Langford, S. C., and Pederson, L. R., J. Vac. Sci. Technol. A7(5), 2943 (1989).Google Scholar
2. Eschbach, P. A., Dickinson, J. T., and Pederson, L. R., MRS Symp. Proc. 129, 385392 (1989).Google Scholar
3. Dickinson, J. T., Langford, S. C., Jensen, L. C., Eschbach, P. A., Pederson, L. R., and Baer, D. R., submitted to J. Appl. Phys.Google Scholar
4. Tetite, G., Agnostini, P., Boiziau, G., Vigouroux, J. P., Gressus, C. Le, and Duraud, J. P., Optics Comm. 53, 189 (1985).Google Scholar
5. Miotello, A. and Toigo, F., Nucl. Instru. Methods Phys. Res. B32, 258 (1988).Google Scholar
6. Gilton, T. L. and Cowin, J. P., “Laser Induced Electron Emission: Space Charge and Electron Acceleration,” conference presentation, ACS National Meeting 1988, L.A.Google Scholar
7. Dreyfus, R. W., “Are Laser-Ablated Monolayers Accurately Characterized by Their Ion Emission?,” in Microbeam Analysis 1989, Russell, P. E., Ed., San Francisco Press, Inc., San Francisco, pp. 261263 (1989)Google Scholar
8. Ohuchi, F. and Holloway, P. H., J. Vac. Sci. Technol. 20, 863 (1982).Google Scholar
9. Tsai, T. E., Griscom, D. L., and Friebele, E. J., Phys. Rev. Lett. 61, 444 (1988).Google Scholar
10. Devine, R. A. B., Phys. Rev. Lett. 62, 340 (1989).Google Scholar
11. Shen, X. A., Jones, S. C., and Braunlich, P., Phys. Rev. Lett. 62, 2711 (1989).Google Scholar
12. Epifanov, A. S., Sov. Phys. JETP 40, 897 (1975).Google Scholar
13. Jones, S. C., Braunlich, P., Casper, R. T., Shen, X. A., and Kelly, P., Optical Engineering (1989).Google Scholar
14. Rowe, J. E., Appl. Phys. Lett. 25, 576 (1974).Google Scholar
15. Stahis, J. H., Kestner, M.A., Phys. Rev. B, 29(12), 7079 (1984).Google Scholar
16. Wood, R. M., in Laser Damage in Optical Materials,Hilger, Adam, ed. pp. 57, (1986)Google Scholar