Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T21:57:44.260Z Has data issue: false hasContentIssue false

Precipitation of Uniform Particles: The Role of Aggregation

Published online by Cambridge University Press:  28 February 2011

C.F. Zukoski
Affiliation:
Department of Chemical Engineering, University of Ilinois, Urbana, II 61801
M. K. Chow
Affiliation:
Department of Chemical Engineering, University of Ilinois, Urbana, II 61801
G.H. Bogush
Affiliation:
Department of Chemical Engineering, University of Ilinois, Urbana, II 61801
J-L. Look
Affiliation:
Department of Chemical Engineering, University of Ilinois, Urbana, II 61801
Get access

Extract

The conventional mechanism developed by LaMer (1) is often considered as the most relevant model for describing the precipitation of uniform particles. In this model, the concentration of a species is slowly increased above its equilibrium value until a critical concentration is reached and nucleation occurs. The resulting particles consume soluble species and the supersaturation level is reduced until there is a balance between particle growth and the generation of reactive species. At this point nucleation stops. Particle growth then continues by molecular addition of soluble species to the growing particles. Uniformity is achieved through a short nucleation time and a particle growth mechanism where the small particles grow more rapidly than the large particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) LaMer, V. K., and Dinegar, R. H., J. Am. Chem. Soc. 72, 4847 (1950).Google Scholar
(2) Keefer, K. P., in “Better Ceramics Through Chemistry II”, eds., Brinker, C. J., Clark, D. E., and Ulrich, D. R., Mat. Res. Soc., Pittsburgh, Pa., 1986, 295304.Google Scholar
(3) Feenstra, T. P. and deBruyn, P. L., J. Colloid Interface Sci. 84, 66 (1981).Google Scholar
(4) Murphy, P. J., Posner, A. M., and Quirk, J. P., J. Colloid Interface Sci. 56, 270, 284,Google Scholar
4a 298, 312 (1976).Google Scholar
(5) Van der Woude, J. H. A., Rijnbout, J.B., and deBruyn, P.L., Colloids and Surfaces 11, 391 (1984).Google Scholar
(6) Van der Woude, J. H. A. and deBruyn, P. L., Colloids and Surfaces 12, 179 (1984).Google Scholar
(7) Ugeda, N., Nishino, M., and Suito, E., J. Colloid Interface Sci. 43, 264 (1973).Google Scholar
(8) Santacesaria, E., Tonell, M., Storti, G., Pace, R. C., and Carra, S., J. Colloid Interface Sci. 111, 44 (1986).Google Scholar
(9) Fitch, R. M., Palmgren, T. H., Aoyagi, T., and Zuikov, A., Die, Agnew and Malcromolekulwe Chemie 123/124, 261 (1984).Google Scholar
(10) Lichti, G., Gilbert, R. G., Gilbert, and Napper, D. H., J. Polymer Sci 21, 269 (1983).Google Scholar
(11) Feeney, P. J., Napper, D. H., and Gilbert, R. G., Macromolecules 17, 2570 (1984).Google Scholar
(12) Lifshitz, I. M., and Sglozov, V. V., Chem. Solids, 19, 35 (1961).Google Scholar
(13) Bogush, G. H., and Zukoski, C. F., submitted to J. Colloid Interface Sci. 1990.Google Scholar
(14) Kim, S., and Zukoski, C. F., accepted to J. Colloid Interface Sci. 1990.Google Scholar
(15) Kerkez, M. Daby, E., Cohen, G. L., Krabhril, J. P., and Matijevic, E., J. Am. ChemSoc. 67, 2105 (1963).Google Scholar
(16) Hunter, R. J., Foundations of Colloid Science Vol. I, Clarendon Press, Oxford (1987).Google Scholar
(17) Russel, W. B., Saville, D. A., and Schowalter, W.R., Colloidal Dispersions, Oxford University Press, Oxford 1989.Google Scholar
(18) Flory, P. J., Principals of Polymer Chemistry, Cornell University Press, Ithaca, 1953.Google Scholar
(19) Flory, P. J., J. Am. Chem. Soc. 58, 1977 (1936).Google Scholar
(20) Stockmayer, J., J. Chem. Phys. 11, 45 (1943).Google Scholar
(21) Stockmayer, J., in Adv. in Chemistry I. High Polymers, Reinhold Press, New York 1945, pp 61.Google Scholar
(22) Klemperer, W. K., and Ramamurthi, S. D., in Better Ceramics Through Chemistry III, eds., Brinker, C. J., Clark, D. E. and Ulrich, D. R., Mat. Res. Soc. Symp. 121 (1988).Google Scholar
(23) Klemperer, W. K., and Ramamurthi, S. D., to appear in J. Noncrystalline Solics, 1990.Google Scholar
(24) Tanaka, T., Ishiwara, S., and Ishimuto, C., Phy. Rev. Lett 38, 771 (1977).Google Scholar
(25) Bogush, G. H., Dickstein, G. L., Lee, P. K. D., and Zukoski, C. F., MR.S. Symposium Series 121, 57 (1988).Google Scholar
(26) Jean, J., and Ring, T. A., Langmuir 2, 251 (1986).Google Scholar
(27) Jean, J., and Ring, T. A., Colloids and Surfaces 29, 273 (1988).Google Scholar
(28) Edelson, L. H., and Glaeser, A. M., J. Am. Ceramic. Soc. 71, 225 (1988).Google Scholar
(29) Matsoukas, T., and Gulari, E., J. Colloid Interface Sci. 124, 252 (1988)Google Scholar
29a and 132, 13 (1989).Google Scholar