Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T21:31:35.259Z Has data issue: false hasContentIssue false

Possidle Isomers and Electronic Structure of C60H36

Published online by Cambridge University Press:  28 February 2011

B. I. Dunlap
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375-5000.
D. W. Brenner
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375-5000.
R. C. Mowrey
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375-5000.
J. W. Mintmire
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375-5000.
D. H. Robertson
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375-5000.
C. T. White
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375-5000.
Get access

Abstract

Newly developed empirical hydrocarbon potentials and self-consistent first-principles local density functional methods are used to investigate possible isomers and the electronic structure of C60H36. Within the high symmetry Th structure conjectured by the groups at Rice University there are two inequivalent sets of hydrogen atoms containing twelve and twenty-four atoms respectively. Binding each set either inside or outside of the C60 cage leads to four isomers of C60H36 with inequivalent strain energies. Although we find that placing twelve hydrogens inside the cage can lead to a metastable structure, our calculated total energies suggest that the isomer with all the hydrogens on the outside of the cage is the energetically most stable.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Krätschmer, W., Fostiropoulos, K., and Huffman, D.R., Chem. Phys. Lett. 170, 167 (1990).CrossRefGoogle Scholar
2. Krätschmer, W., Lamb, L.D., Fostiropolous, K., and Huffman, D.R., Nature 347, 354 (1990).Google Scholar
3. Taylor, R., Hare, J.P., Abdul-Dada, A.K., and Kroto, H.W., J. Chem. Soc. Commun., 1423 (1990).Google Scholar
4. Johnson, R.D., Meijer, G., and Bethune, D.S., J. Am. Chem. Soc. 112, 8983 (1990).CrossRefGoogle Scholar
5. Ajie, H., Alvarez, M.M., Anz, S.J., Beck, R.D., Diederich, F., Fostiropoulos, K., Huffman, D.R., Krätschmer, W., Rubin, Y., Schriver, K.E., Sensharma, D., and , R.L., J. Phys. Chem. 94, 8630 (1990).Google Scholar
6. Haufler, R.E., Conceicao, J., Chibente, L.P.F, Chai, Y., Byrne, N.E., Flanagan, S., Haley, M.M., O’Brien, S.C., Pan, C., Xiao, Z., Billups, W.E., Ciufolini, M.A., Hauge, R.H., Margrave, J.L., Wilson, L.J., Curl, R.F., and Smalley, R.E., J. Phys. Chem., 94 8634 (1990).CrossRefGoogle Scholar
7. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E., Nature 318, 163 (1985).CrossRefGoogle Scholar
8. Brenner, D.W., Phys. Rev. B 42, 9458 (1990).CrossRefGoogle Scholar
9. Dunlap, B.I. and Rösch, N., Advances in Quantum Chemistry, ed. Trickey, S.B. (Academic Press, New York, 1990) p. 317.Google Scholar
10. Perdew, J.P. and Zunger, A., Phys. Rev. B 23, 5948 (1981).Google Scholar
11. Dunlap, B.I., Adv. Chem. Phys. 69, 287 (1987).Google Scholar
12. Dunlap, B.I., Int. J. Quantum Chem. S22, 257 (1988).CrossRefGoogle Scholar