Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T11:59:06.893Z Has data issue: false hasContentIssue false

Possible Origin of Large Response Times and Ambipolar Diffusion Lengths in Hot-Wire-Cvd Silicon Films

Published online by Cambridge University Press:  10 February 2011

R. Schwarz
Affiliation:
Instituto Superior Técnico, Physics Department, P-1096 Lisbon, PORTUGAL
T. Múrias
Affiliation:
Instituto Superior Técnico, Physics Department, P-1096 Lisbon, PORTUGAL
J.P. Conde
Affiliation:
Instituto Superior Técnico, Department of Materials Engineering, P-1096 Lisbon, PORTUGAL
P. Brogueira
Affiliation:
Instituto Superior Técnico, Physics Department, P-1096 Lisbon, PORTUGAL
V. Chu
Affiliation:
Instituto Superior Técnico, Physics Department, P-1096 Lisbon, PORTUGAL Instituto de Engenharia de Sistemase Computadores, P-1000 Lisbon, PORTUGAL
Get access

Abstract

We measured the response time zR and the ambipolar diffusion length Lamb in amorphous (a-Si:H) and microcrystalline silicon films (μ-Si:H) prepared by hot-wire chemical vapor deposition (HW-CVD). The response times in the amorphous and microcrystalline HW films were larger by factors of 100 and 1000, respectively, than in standard PE-CVD a-Si:H films (1-2 μs). The ambipolar diffusion length of the HW-CVD films was about twice as large as in conventional glow-discharge films. Strong doping of microcrystalline HW films with trimethylboron (TMB) led to a reduction of the response time. The results hint to a positive effect of the compact microstructure of HW-CVD films. We suggest the dark conductivity activation energy, Eact, and response time, τR, to be used as suitable parameters to describe optoelectronic film properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Mahan, A.H., Nelson, B.P., Salamon, S.J., and Crandall, R.S., Mat. Res. Soc. Symp. Proc. 219 (1991)673.Google Scholar
2 Nelson, B.P., Iwaniczko, E., Schropp, R.E.I., Mahan, H., Molenbroek, E.C., Salamon, S., and Crandall, R.S., Proc. 12th Europ. Photovolt. Solar Energy Conf. (1994).Google Scholar
3 Meiling, H. and Schropp, R.E.I., Appl. Phys. Lett. 69 (1996) 1062.Google Scholar
4 Chu, V., Jarego, J., Silva, H., Silva, T., Reissner, M., Brogueira, P., and Conde, J.P., Appl. Phys. Lett. 70 (1997) 2714.Google Scholar
5 Rath, J.K., Zutphen, A.J.M.M. van, Meiling, H., and Schropp, R.E.I., Mat. Res. Soc. Symp. Proc. 467 (1997) 445.Google Scholar
6 Schwarz, R., Wang, F., Grebner, S., Fischer, T., Koynov, S., Chu, V., Brogueira, P., and Conde, J., J. Non-Cryst. Sol. 164–166 (1993) 477.Google Scholar
7 Conde, J.P., Brogueira, P., and Chu, V., Phil. Mag. B76 (1997) 299; J.P. Conde, P. Brogueira, R. Castanha, and V. Chu, Mat. Res. Soc. Symp. Proc. 420 (1996) 357.Google Scholar
8 Brogueira, P., Chu, V., Ferro, A.C., Conde, J.P., J. Vac. Sci. Technol. A15 (1997) 2968.Google Scholar
9 Ritter, D., Zeldov, E., and Weiser, K., Phys. Rev. B 38, 8296 (1988).Google Scholar
10 Wang, F. and Schwarz, R., Phys. Rev. B52 (1995) 14586.Google Scholar
11 Schumm, G., Abel, C.-D., and Bauer, G.H., J. Non-Cryst. Sol. 137&138 (1991) 351.Google Scholar
12 Remes, Z., Vanecek, M., Mahan, A.H., Crandall, R.S., Phys. Rev. B56 (1997) R12710.Google Scholar