Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T05:47:27.080Z Has data issue: false hasContentIssue false

Porous Silicon: A Possible Buffer Layer for Diamond Growth on Silicon Substrates

Published online by Cambridge University Press:  28 February 2011

Zhaohui Liu
Affiliation:
The State Key Lab. of Surface Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100080, People’s Republic of China.
B.Q. Zong
Affiliation:
Department of Physics, Peking University, Beijing 100871, China.
Zhangda Lin
Affiliation:
The State Key Lab. of Surface Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100080, People’s Republic of China.
Get access

Abstract

Continuous diamond films have been grown on porous silicon by hot filament chemical vapor deposition. The demonstration of diamond growth on porous silicon seems to suggest that porous silicon can act as a buffer layer for diamond growth on Si substrates, and that the nanoscale structures of porous silicon play an important role in nucleation and growth of diamond.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Iijima, S., Aikawa, Y., and Baba, K., Appl. Phys. Lett. 57, 2646 (1990).Google Scholar
2 Sawabe, A. and Inuzuka, T., Thin Solid Films 137, 89 (1986)Google Scholar
3 Suzuki, K., Sawabe, A., Yasuda, H., and Inuzaka, T., Appl. Phys. Lett. 50, 728 (1987)Google Scholar
4 Chang, C.-P., Flamm, D.L., Ibbotson, D.E., and Mucha, J.A., J. Appl. Phys. 63, 1744 (1988).Google Scholar
5 Kirkpatrick, A.R., Ward, B.W., and Economou, N.P., J. Vac. Sci. Technol. B7, 1947 (1989).Google Scholar
6 Hirabayashi, K., Taniguchi, Y., Takamatsu, O., Ikeda, T., Ikoma, K., and Iwasaki-Kuri-hara, N., Appl. Phys. Lett. 53, 1815 (1988).Google Scholar
7 Dennig, Paul A. and Stevenson, David A., Appl. Phys. Lett. 59, 1562 (1991).Google Scholar
8 Smith, R.L. and Collins, S.D., J. Appl. Phys. 71, Rl (1992).Google Scholar
9 Herino, R., Perio, A., Barla, K. and Bomchil, G., Materials Letters 2, 519 (1984).Google Scholar
10 Luryi, S. and Suhir, E., Appl. Phys. Lett. 49, 140 (1986).Google Scholar
11 Lin, T.L., Sadwick, L., Wang, K.L., Kao, Y.C., Hull, R., Nieh, C.W., Jamieson, D.N. and Liu, J.K., Appl. Phys. Lett. 51, 814 (1987).Google Scholar
12 Kao, Y.C., Wang, K.L., Wu, B.J., Lin, T.L., Nieh, C.W., Jamieson, D., and Bai, G., Appl. Phys. Lett. 51, 1809 (1987).Google Scholar
13 Maechashi, K., Sato, M., Hasegawa, S., Nakashima, H., Ito, T. and Hiraki, A., Jpn. J. Appl. Phys. 30, L683 (1991).Google Scholar
14 Kobayashi, K., Karasawa, S., Watanabe, T., Togashi, F., J. Crystal Growth 99, 1211 (1990).Google Scholar
15 Turner, K.F., Stoner, B.R., Bergman, L., Glass, J.T. and Nemanich, R.J., J. Appl. Phys. 69, 6400 (1991).Google Scholar
16 Lin, S.J., Lee, S.L., Hwang, J., Chang, C.S. and Wen, H.Y., Appl. Phys. Lett. 60, 1559 (1992).Google Scholar